核密度估计
核密度估计(英語:Kernel density estimation,縮寫:KDE)是在概率论中用来估计未知的密度函数,属於非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。Ruppert和Cline基于数据集密度函数聚类算法提出修订的核密度估计方法。 ![]() 核密度估计在估计边界区域的时候会出现边界效应。 在单变量核密度估计的基础上,可以建立风险价值的预测模型。通过对核密度估计变异系数的加权处理,可以建立不同的风险价值的预测模型。 一些比较常用的核函数是: 均匀核函数 , 加入带宽后: 。 三角核函数 , 加入带宽后: 。 伽马核函数 。 定义设为从单变量分布中抽取的独立同分布样本,给定点有未知的概率密度,我们对估计函数的形状感兴趣,其核密度估计器是 其中是非负的核函数,带宽为平滑参数。带下标h的核被称为缩放核,定义为。直觉上讲,在数据允许的范围内应当选择尽可能小的带宽;然而,偏差和方差之间总有所权衡。 常用的核函数有:均匀核(Uniform)、三角核(Triangular)、双权核(Biweight)、三权核(Triweight)、Epanechnikov核、正态核(Normal)等。从均方误差的角度来看,Epanechnikov核是最佳的[1],尽管对于前面列出的核来说,效率的损失很小[2]。由于其数学特性良好,正态核经常被使用,即,其中是标准正态密度函数。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia