梅滕斯函數![]() 梅滕斯函數(Mertens function)為一數論中的函數,針對所有正整數n定义,得名自弗朗茨·梅滕斯,梅滕斯函數定义如下
其中μ是默比乌斯函数。 上述定義也可以延伸到實數: 以較不嚴謹的說法來看,M(n)是計算到n為止的无平方数因数的数,其中有偶數個質因數的個數,減去有奇數個質因數的個數。 梅滕斯函數的值及其零點
梅滕斯函數緩慢的增長及減少,不論其平均值或是峰值都有類似特性,其函數以類似混沌的方式,在零的上下變化,梅滕斯函數在以下幾點的數值為零:
實際計算利用類似質數計算的埃拉托斯特尼筛法,可以隨著n的增加,計算梅滕斯函數
所有不大於N正整數的梅滕斯函數可以在用O(N2/3+ε)時間內算出來,不過已知有更好的演算法。有基本的演算法可以計算單獨的M(N),時間複雜度為O(N2/3*(ln ln(N))1/3)。 梅滕斯猜想和黎曼猜想因為默比乌斯函数的數值只有-1、0及+1,因此梅滕斯函數緩慢的變化,不存在正整數n使得|M(n)| > n。梅滕斯猜想更進一步,認為不存在正整數n使得梅滕斯函數的絕對值超過數值的平方根。梅滕斯猜想是由汤姆斯·斯蒂尔吉斯在一封于1885年写给夏尔·埃尔米特与弗朗茨·梅滕斯的信中提出的,已在1985年被安德魯·奧德里茲科與赫爾曼·特里爾證否[1]。 黎曼猜想等價於較弱型式的梅滕斯猜想M(n) = O(n1/2 + ε)。因為較高的M(n)成長的速度至少和n的平方根一様快,因此可以對成長速率定出上下限。此處的O為大O符号。 参见參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia