梯度定理
梯度定理(英語:gradient theorem),也叫线积分基本定理,是说标量场梯度沿曲线的积分可用标量场在该曲线两端的值之差来计算。 设函数,则 梯度定理把微积分基本定理从直线数轴推广到平面、空间,乃至一般的维空间中的曲线。 梯度定理表明梯度场的曲线积分是路径无关的,这是物理学中“保守力”的定义方式之一。如果是位势,则就是保守向量场。上面的公式表明:保守力做功只和物体运动路径的端点有关,而与路径本身无关。 梯度定理有个逆定理,是说任何路径无关的向量场都可以表示为某个标量场的梯度。这个逆定理和原定理一样在纯粹和应用数学中有很多推论和应用。 证明设是个从中的开集到的可微函数,设是闭区间到的可微函数,那么由多元复合函数求导法则,复合函数在闭区间上可微,并且对所有, 这里是上的内积。 的定义域中含有从p到q的可微曲线γ,定向为从p至q。设是γ的参数化(其中),那么上面的式子说明 第一个等式是根据曲线积分的定义,第三个等式用了微积分基本定理。[1]:374 梯度定理的逆定理梯度定理说明如果一个向量场是某个标量函数的梯度(即保守场),则是路径无关的(即沿分段可微的曲线的积分只和路径的端点有关)。这个定理有个强大的逆定理,是说若是个路径无关的向量场,则它是某个标量函数的梯度。[1]:410容易证明一个向量场是路径无关的当且仅当它沿任何闭曲线积分为零,因此梯度定理的逆定理是说如果沿定义域中的任何闭曲线积分为零,则它是某标量函数的梯度。 参考文献 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia