欧拉定理 (数论)在数论中,欧拉定理(也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理表明,若为正整数,且互素(即),则 即与1在模n下同余;φ(n)为欧拉函数。欧拉定理得名于瑞士数学家莱昂哈德·欧拉。 欧拉定理实际上是费马小定理的推广。 例子首先看一个基本的例子。令,,此两数為互質正整數。小於等於5的正整数中与5互質的数有4個(1、2、3和4),所以(详情见欧拉函数)。计算:,与定理结果相符。 使用本定理可大程度地简化幂的模运算。比如计算的个位数時,可將此命題視為求被10除的余数:因7和10互質,且,故由欧拉定理可知。所以。 一般在简化幂的模运算的时候,当和互質時,可对的指数取模: ,其中。 证明一般的证明中会用到“所有与互質的同余类构成一个群”的性质,也就是说,设是比 小的正整数中所有与 互素的数对应的同余类组成的集合(这个集合也称为模n 的简化剩余系)。这些同余类构成一个群,称为整数模n乘法群。因为此群阶为,所以。 当是素数的时候,,所以欧拉定理变为:
这就是费马小定理。 参看参考书籍
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia