混合模型
在統計學中,混合模型(Mixture model)是用於表示母體中子母體的存在的機率模型,換句話說,混合模型表示了測量結果在母體中的機率分布,它是一個由數個子母體之機率分布組成的混合分布。混合模型不要求測量結果供關於各個子母體之機率分布的資訊即可計算測量結果在母體分布中的機率。 高斯混合模型(Gaussian Mixture Model)對一維的隨機變數的高斯分佈存在以下機率密度函數:
而當將高斯分佈推廣到維時,根據定義,若維的隨機向量服從多變數的常態分佈,則存在一個對稱半正定的共變異數矩陣以及期望值向量滿足的特徵函數。若為非奇異的,則此分佈可以由以下的機率密度函數描述: 為共變異數矩陣的行列式。 而高斯混合模型为单一高斯概率密度函数的延伸,用多个高斯概率密度函数(正态分布曲线)精确地量化变量分布,是将变量分布分解为若干基于高斯概率密度函数(正态分布曲线)分布的统计子模型,每個子模型可視為此混合模型的隱變量。 舉一個不是那麼嚴謹的例子,若是我們手上有一個班級中所有學生某一次考試的各項科目分數分佈,並且每一科的分數都大致依照高斯分佈。則當我們要描述每個學生的總分分佈時,單高斯模型及多維的高斯模型不一定能很好的描述這個分佈,因為每一科的分布的情形都不盡相同,此時我們可以用高斯混合分佈更好的來描述這個問題。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia