漢娜·諾伊曼猜想群論中,漢娜·諾伊曼猜想是關於一個自由群的兩個有限生成子群的交的秩,1957年由漢娜·諾伊曼提出。[1]2011年伊戈爾·米涅耶夫(Igor Mineyev)[2]和喬爾·弗里德曼(Joel Friedman)[3]各自證明了這個猜想。 猜想敘述設H, K ≤ F(X)是自由群F(X)的兩個非平凡有限生成子群, L = H ∩ K為其交,這個猜想指
其中對群G,rank(G)為其秩,即G的生成集合的最小大小。按尼爾森-施賴埃爾(Nielsen-Schreier)定理,自由群的子群也都是自由群,而自由群的秩等於任一個自由基底的大小。 歷史這個猜想的靈感來自Howson在1954年的一條定理。[4]他證明了一個自由群的任何兩個有限生成子群的交都是有限生成的,即是有有限秩。他並證明了若H和K是自由群F(X)有限生成子群,其秩分別為n ≥ 1及m ≥ 1,那麼H ∩ K的秩s適合
漢娜·諾伊曼在一篇1956年的論文中,[5]改進了上限
諾伊曼在1957年的附錄中,[1]把上限改進到
她又猜想上式右邊去掉因數2也成立,這就是以其命名的猜想。 參考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia