潘勒韦分析潘勒韦分析原是保罗·潘勒韦在1895年关于非线性常微分方程可积性的理论,后经数学家推广到分析非线性偏微分方程中,并发展出几种程序,常见的有Ablowitz-Ramani-Segur(ARS)程序、Weiss-Tabor-Carnevale(WTC)程序和Kruskal简化法等。潘勒韦分析的过程复杂,需借助Maple、Mathematica等计算机代数系统进行运算[1] Kruskal 简化法原理对于给定的 偏微分方程
假设其解可展开为Laurent级数形式:
设定方程解的首项目可以表示为 ≈ 代人原式,平衡φ的幂次,得到一个含共振点的递推关系,如果对于任意的u(j)、φ,此递推关系是自相容的,则原来的方程是可积的。 实例伯格斯方程的潘勒韦分析
作Laurent级数展开
其中 和 是非特征奇异点流型 和 u[0]≠0附近的解析函数。 设定方程解的首项可以表示为 ≈ 代人原式,得到
平衡最高阶微商与非线性项,得到: ρ=1,u[0] = 2 b/a; 将 代人偏微分方程, φ的最低次项为
代入伯格斯方程, 因此 j=-1,2 取 再带入原方程得:
整理后,令其φ 的2次、1次,及常数项为零 得到一组多项式方程组:
伯格斯方程通过潘勒韦测试的条件是 在截短短展开式中,φ、u[2] 是任意函数。 经过一系列运算可知 u[2],φ为任意函数,伯格斯方程乃潘勒韦可积,其解有如下形式:
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia