理想類群
理想類群(英語:Ideal class group)是代數數論的基本對象之一,簡稱類群。 一個代数数域K的理想类群是形如 JK /PK 的商群; 此处JK 是代数数域K的整数环的所有分式理想构成的群; 而PK是这个群的子群,包含所有可以被一个元素生成的分式理想(类似主理想的定义)。 形式定義設 為戴德金整環。此時 中的非零理想對乘法構成一個交換么半群。 今將定義其上的等價關係:設 為二非零理想,定義 理想么半群對此關係的商構成一個交換群 ,稱為 的理想類群。 另一套進路是考慮 的非零分式理想構成之交換群,再考慮它對主分式理想 之商,由此得到的對象自然同構於理想類群。 性質例子考慮二次域 。考慮理想
易證此非主理想,因此理想類群非零。事實上,其理想類群是二階循環群。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia