电容去离子的基本思想是通过施加静电场强制离子向带有相反电荷的电极处移动,因此英文称之为capacitive deionization(CDI)。由于碳材料,如活性碳和碳气凝胶等制成的电极,不仅导电性能良好,而且具有很大的比表面积。若将两片活性碳材料分别作为电容器阴阳两级并在两电极之间施加一定的直流电压便会形成一个静电场。置于静电场中碳电极会在其与电解质溶液界面处产生很强的双电层。双电层能吸附并储存大量的电解质离子,并储存一定的能量。一旦除去电场,吸引的离子被释放到本体溶液中,溶液中的浓度升高。这一过程也称为“充电富集”。此种原理也被大量应用在超级电容器和电容盐度梯度发电(capacitive blue energy)中。
1. G.W. Murphy and D.D. Caudle (1967). “Mathematical theory of electrochemical
demineralization in flowing systems,” Electrochim. Acta 12: 1655-1664.
2. A.M. Johnson and J. Newman (1971). “Desalting by means of porous carbon electrodes,” J. Electrochem. Soc. 118: 510-517.
3. Y. Oren and A. Soffer (1978). “Electrochemical Parametric Pumping,” J. Electrochem. Soc. 125: 869-875.
4. J.C. Farmer et al. (1996). “Capacitive Deionization of NaCI and NaNO3 Solutions with
Carbon Aerogel Electrodes,” J. Electrochem. Soc. 143: 159-169.
5. C.J. Gabelich et al. (2002). “Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels,” Env. Sci. & Techn. 36: 3010-3019.
6. M.D. Andelman (2002). "Charge barrier flow-through capacitor," CA Patent 2444390.
7. T.J. Welgemoed and C.F. Schutte (2005). " Capacitive Deionization Technology: An alternative desalination solution," Desalination 183: 327-340.
8. J.-B. Lee et al. (2006). "Desalination of a thermal power plant wastewater by membrane
capacitive deionization," Desalination 196: 125-134.
9. Y. Oren, (2008). "Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)," Desalination 228: 10-29.
10. H. Li et al. (2008). "Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes," Water Research 42: 4923-4928.
11. P. Xu et al. (2008). “Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology,” Water Research 42: 2605-2617.
12. P.M. Biesheuvel (2009). "Thermodynamic cycle analysis for capacitive deionization," J. Colloid Interface Sci. 332: 258-264.
13. P.M. Biesheuvel et al. (2009). “Dynamic adsorption/desorption process model for capacitive deionization," J. Phys. Chem. C 113: 5636-5640.
14. R. Zhao et al. (2010). "Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization," J. Phys. Chem. Lett. 1: 205-210.
15. Y. Bouhadana et al. (2010). “Several Basic and Practical Aspects Related to Electrochemical Deionization of Water,” AIChE J. 56: 779-789.
16. M.A. Anderson et al. (2010). “Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?,” Electrochim. Acta 55: 3845-3856.
17. P.M. Biesheuvel and A. van der Wal (2010). “Membrane capacitive deionization,” J. Membrane Sci. 346: 256-262.
18. Y.-J. Kim and J.-H. Choi (2010). “Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer,” Water Research 44: 990-996.