皮克定理![]() 給定頂點座標均是整點(或正方形格子點)的簡單多邊形,皮克定理說明了其面積 和內部格點數目 、邊上格點數目 的關係:。 證明因為所有簡單多邊形都可切割為一個三角形和另一個簡單多邊形。考慮一個簡單多邊形 ,及跟 有一條共同邊的三角形 。若 符合皮克公式,則只要證明 加上 的 亦符合皮克公式(I),與及三角形符合皮克公式(II),就可根據數學歸納法,對於所有簡單多邊形皮克公式都是成立的。 多邊形設 和 的共同邊上有 個格點。
三角形證明分三部分:證明以下的圖形符合皮克定理:
矩形設矩形 長邊短邊各有,個格點: 直角三角形易見兩條鄰邊和對角線組成的兩個直角三角形全等,且 , 相等。設其斜邊上有 個格點。 一般三角形逆运用前面对2个多边形的证明: 既然矩形符合皮克定理,直角三角形符合皮克定理。又前面证明到若P,T符合皮克公式,则 加上 的 亦符合皮克公式。那么由于矩形可以分解成1个任意三角形和至多三个直角三角形。 于是显然有,只有当这个任意三角形也符合皮克定理的时候,才会使得在直角三角形符合的同时,矩形也符合。 推廣
定理提出者Georg Alexander Pick,1859年生於維也納,1943年死於特萊西恩施塔特集中營。 相關書籍
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia