Moore DFA最小化算法由Edward F. Moore (1956) 给出。与 Hopcroft 算法类似地,它维护一个划分,且这个划分的初值为接受和拒绝状态的划分,并同样反复细化直至无法继续细化。在每一步中,它都会用 s + 1 个划分的最粗公细化 (coarsest common refinement) 来替代当前的划分,这 个划分中的一个是当前划分,其他的 个则是当前划分在转移函数和在所有输入符号下的原象。当这一操作无法改善当前划分时,算法即停止。这个算法在最坏情况下的复杂度是 :算法的每个步骤都需要 ,这是基数排序一个变种用以重排状态的复杂度,状态重排使得新划分下同一集合中状态的编号顺序是接连的。又,最多会有 轮,因为除最后一轮外,每轮都使得划分中的集合数目增加。在Moore算法下导致最坏情况的DFA最小化问题实例和Hopcroft算法是相同的。算法的轮数会比 小得多,所以平均上( 是常数),其性能可达 甚至 ,结果取决于建模平均情况行为的自动机随机选取分布方式。[6]
^For instance, the language of binary strings whose nth symbol is a one requires only n + 1 states, but its reversal requires 2n states. Leiss (1981) provides a ternary n-state DFA whose reversal requires 2n states, the maximum possible. For additional examples and the observation of the connection between these examples and the worst-case analysis of Brzozowski's algorithm, see Câmpeanu et al. (2001).
Berstel, Jean; Boasson, Luc; Carton, Olivier; Fagnot, Isabelle, Minimization of Automata, Automata: from Mathematics to Applications, European Mathematical Society, 2010, arXiv:1010.5318
Brzozowski, J. A., Canonical regular expressions and minimal state graphs for definite events, Proc. Sympos. Math. Theory of Automata (New York, 1962), Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y.: 529–561, 1963, MR 0175719.
Câmpeanu, Cezar; Culik, Karel, II; Salomaa, Kai; Yu, Sheng, State Complexity of Basic Operations on Finite Languages, 4th International Workshop on Automata Implementation (WIA '99), Lecture Notes in Computer Science 2214, Springer-Verlag: 60–70, 2001, doi:10.1007/3-540-45526-4_6.
Hopcroft, John, An n log n algorithm for minimizing states in a finite automaton, Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), New York: Academic Press: 189–196, 1971, MR 0403320. See also preliminary version, Technical Report STAN-CS-71-190 (页面存档备份,存于互联网档案馆), Stanford University, Computer Science Department, January 1971.
Hopcroft, John E.; Ullman, Jeffrey D., Introduction to Automata Theory, Languages, and Computation, Reading/MA: Addison-Wesley, 1979, ISBN 0-201-02988-X
Kameda, Tsunehiko; Weiner, Peter, On the state minimization of nondeterministic finite automata, IEEE Transactions on Computers, 1970, 100 (7), doi:10.1109/T-C.1970.222994.
Moore, Edward F., Gedanken-experiments on sequential machines, Automata studies, Annals of mathematics studies, no. 34, Princeton, N. J.: Princeton University Press: 129–153, 1956, MR 0078059.