神经微分方程神经微分方程(英語:neural differential equation)是机器学习中的一种微分方程,其方程右侧项由人工神经网络的权重参数化。[1]神经常微分方程(nerual ordinary differential equation,简称neural ODE)是最常见的神经微分方程,可写作如下形式: 在经典的神经网络中,各层是按自然数排序的。而在神经ODE中,各层形成一个由正实数排序的连续体。具体来说,函数将每个正序号t映射为一个实数值,表示神经网络在该层的状态。 神经ODE可以理解为连续时间控制系统,其数据插值能力可以用可控制性来解释。[2] 与残差神经网络的关联神经ODE可以被视为一种具有连续层而非离散层的残差神经网络。[1]将单位时间步长的欧拉方法应用于神经ODE,会得到残差神经网络的前向传播公式: 其中表示该残差神经网络的第层。在残差神经网络中,前向传播是通过逐层应用一系列变换来实现的,而神经ODE的前向传播则是由求解微分方程来完成的。具体而言,给定神经ODE的输入,对应的输出可以通过求解以下初值问题得到: 而时的解即为输出。 通用微分方程在已知某些物理信息的情况下,可以将神经ODE与已有的第一性原理模型相结合,构建一个被称为通用微分方程(universal differential equation,简称UDE)的物理信息神经网络模型。[3][4][5][6]例如,洛特卡-沃尔泰拉模型的UDE版本可写成以下形式:[7] 其中和是神经网络参数化的修正项。 参见参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia