咪唑-2-亚基、三唑-5-亚基(及少部分二氨基卡宾)能够与许多元素配位,包括碱金属、主族元素、过渡金属,甚至是镧系元素和锕系元素。下示的元素周期表列出了拥有已知相关配合物的元素,其中部分已经通过单晶X-射线进行晶体结构表征[40][58][59]。据信,稳定卡宾在作为金属配体方面的特性与膦相似,通过卡宾碳孤对电子作σ供体,但因为相邻的氮而无法很好的接受金属π电子,因此适合与相对缺电子的金属进行配位。D. Enders[60]和Wolfgang A. Herrmann[61][62]已经证明,这些卡宾在某些催化循环中是膦的可行替代配体,虽然这些替代品在活化金属催化剂方面的程度不如膦,但可以得到更耐用的催化剂。Hermann和Enders使用含咪唑和三唑型卡宾配体的催化剂取得了一定的成功[58][60][61][62] 。Grubbs[63]报道了在烯烃复分解催化剂RuCl2(PCy3)2CHPh中用咪唑-2-亚基替代膦配体(PCy3),并指出随着关环复分解反应(RCM)的增加获得了显著的“空气与水的稳定性”。含有两个和三个卡宾部分的分子已被制备作为潜在的双齿或三齿配体[37][38]。
^Guoyong Song; Yan Su; Roy A. Periana; Robert H. Crabtree; Keli Han. Anion-Exchange-Triggered 1,3-Shift of an NH Proton to Iridium in Protic N-Heterocyclic Carbenes: Hydrogen-Bonding and Ion-Pairing Effects. Angew. Chem. Int. Ed. 2010, 49: 912–917. doi:10.1002/anie.200905691.
^Ronald Breslow. Mechanism of Thiamine Action: Participation of a Thiazolium Zwitterion. Chem. Ind. 1957, 26: 893.
^Ronald Breslow. On the Mechanism of Thiamine Action. IV.1 Evidence from Studies on Model Systems. J. Am. Chem. Soc. 1958, 80 (14): 3719–3726. doi:10.1021/ja01547a064.
^R. Breslow. Rapid Deuterium Exchange in Thiazolium Salts. J. Am. Chem. Soc. 1957, 79 (7): 1762–1763. doi:10.1021/ja01564a064.
^Berkessel A.; Elfert S.; Yatham V. R.; Neudörfl J.-M.; Schlörer N. E.; Teles J. H. Umpolung by N-Heterocyclic Carbenes: Generation and Reactivity of the Elusive 2,2-Diamino Enols (Breslow Intermediates). Angew. Chem. Int. Ed. 2012, 51 (49): 12370–12374. PMID 23081675. doi:10.1002/anie.201205878.
^ 9.09.1H. W. Wanzlick; E. Schikora. Ein nucleophiles Carben [A nucleophilic carbene]. Chem. Ber. 1960, 94 (9): 2389–2393. doi:10.1002/cber.19610940905.
^ 10.010.1H. W. Wanzlick. Aspects of Nucleophilic Carbene Chemistry. Angew. Chem. Int. Ed. 1962, 1 (2): 75–80. doi:10.1002/anie.196200751.
^D. M. Lemal; R. A. Lovald; K. I. Kawano. Tetraaminoethylenes. The Question of Dissociation. J. Am. Chem. Soc. 1964, 86 (12): 2518–2519. doi:10.1021/ja01066a044.
^H. E. Winberg; J. E. Carnahan; D. D. Coffman; M. Brown. Tetraaminoethylenes. J. Am. Chem. Soc. 1965, 87 (9): 2055–2056. doi:10.1021/ja01087a040.
^Denk M. K.; Hatano K.; Ma M. Nucleophilic Carbenes and the Wanzlick Equilibrium A Reinvestigation. Tetrahedron Lett. 1999, 40 (11): 2057–2060. doi:10.1016/S0040-4039(99)00164-1.
^ 15.015.1H. W. Wanzlick; H. J. Schonherr. Chemie nucleophiler Carbene, XVIII, 1) 1.3.4.5-Tetraphenyl-imidazoliumperchlorat [Cemistry of nucleophilic carbenes, XVIII. 1) 1,3,4,5-Tetraphenylimidazolium perchlorate]. Liebigs Ann. Chem. 1970, 731: 176–179. doi:10.1002/jlac.19707310121.
^R. Gleiter; R. Hoffmann. Stabilizing a singlet methylene. J. Am. Chem. Soc. 1968, 90 (20): 5457–5460. doi:10.1021/ja01022a023.
^ 17.017.1A. Igau; H. Grutzmacher; A. Baceiredo; G. Bertrand. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ3-phosphaacetylene. J. Am. Chem. Soc. 1988, 110 (19): 6463–6466. doi:10.1021/ja00227a028.
^Arduengo, Anthony J.; Harlow, Richard L.; Kline, Michael. A stable crystalline carbene. J. Am. Chem. Soc. January 1991, 113 (1): 361–363. doi:10.1021/ja00001a054.
^ 22.022.1A. J. Arduengo; F. Davidson; H. V. R. Dias; J. R. Goerlich; D. Khasnis; W. J. Marshall; T. K. Prakasha. An Air Stable Carbene and Mixed Carbene "Dimers". J. Am. Chem. Soc. 1997, 119 (52): 12742–12749. doi:10.1021/ja973241o.
^Lai Chun-Liang; Guo Wen-Hsin; Lee Ming-Tsung; Hu Ching-Han. Ligand properties of N-heterocyclic and Bertrand carbenes: A density functional study. J. Organomet. Chem. 2005, 690 (24–25): 5867–5875. doi:10.1016/j.jorganchem.2005.07.058.
^ 26.026.126.226.3A. J. Arduengo; H. V. R. Dias; R. L. Harlow; M. Kline. Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc. 1992, 114 (14): 5530–5534. doi:10.1021/ja00040a007.
^ 27.027.127.2J. Arduengo; J. R. Goerlich; W. J. Marshall. A stable diaminocarbene. J. Am. Chem. Soc. 1995, 117 (44): 11027–11028. doi:10.1021/ja00149a034.
^ 28.028.128.228.328.4M. K. Denk; A. Thadani; K. Hatano; A. J. Lough. Steric Stabilization of Nucleophilic Carbenes. Angew. Chem. Int. Ed. 1997, 36 (23): 2607–2609. doi:10.1002/anie.199726071.
^ 29.029.129.229.3Alder, RW; Chaker, L; Paolini, FP. Bis(diethylamino)carbene and the mechanism of dimerisation for simple diaminocarbenes. Chemical Communications (Cambridge, England). 2004, (19): 2172–2173. PMID 15467857. doi:10.1039/b409112d.
^ 30.030.130.230.3R. W. Alder; P. R. Allen; M. Murray; A. G. Orpen. Bis(diisopropylamino)carbene. Angew. Chem. Int. Ed. 1996, 35 (10): 1121–1123. doi:10.1002/anie.199611211.
^ 31.031.131.231.331.4R. W. Alder; M. E. Blake. Bis(N-piperidyl)carbene and its slow dimerisation to tetrakis(N-piperidyl)ethene. Chem. Commun. 1997, (16): 1513–1514. doi:10.1039/a703610h.
^ 32.032.1R. W. Alder; M. E. Blake; J. M. Oliva. Diaminocarbenes; Calculation of Barriers to Rotation about Ccarbene–N Bonds, Barriers to Dimerization, Proton Affinities, and 13C NMR Shifts. J. Phys. Chem. A. 1999, 103 (50): 11200–11211. Bibcode:1999JPCA..10311200A. doi:10.1021/jp9934228.
^ 34.034.1R. W. Alder; C. P. Butts; A. G. Orpen. Stable Aminooxy- and Aminothiocarbenes. J. Am. Chem. Soc. 1998, 120 (44): 11526–11527. doi:10.1021/ja9819312.
^ 36.036.136.2W. A. Herrmann; C. Kocher; L. J. Goossen; G. R. J. Artus. Heterocyclic Carbenes: A High-Yielding Synthesis of Novel, Functionalized N-Heterocyclic Carbenes in Liquid Ammonia. Chem. Eur. J. 1996, 2 (12): 1627–1636. doi:10.1002/chem.19960021222.
^ 37.037.1W. A. Herrmann; M. Elison; J. Fischer; C. Kocher; G. R. J. Artus. N-Heterocyclic Carbenes: Generation under Mild Conditions and Formation of Group 8–10 Transition Metal Complexes Relevant to Catalysis. Chem. Eur. J. 1996, 2 (7): 772–780. doi:10.1002/chem.19960020708.
^ 39.039.139.239.3D. Enders; K. Breuer; G. Raabe; J. Runsink; J. H. Teles; J. P. Melder; K. Ebel; S. Brode. Preparation, Structure, and Reactivity of 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a New Stable Carbene. Angew. Chem. Int. Ed. 1995, 34 (9): 1021–1023. doi:10.1002/anie.199510211.
^ 40.040.140.240.3R. W. Alder; M. E. Blake; C. Bortolotti; S. Buffali; C. P. Butts; E. Lineham; J. M. Oliva; A. G. Orpen; M. J. Quayle. Complexation of stable carbenes with alkali metals. Chem. Commun. 1999, (3): 241–242. doi:10.1039/a808951e.
^Itoh, T; Nakata, Y; Hirai, K; Tomioka, H. Triplet Diphenylcarbenes Protected by Trifluoromethyl and Bromine Groups. A Triplet Carbene Surviving a Day in Solution at Room Temperature. J. Am. Chem. Soc. 2006, 128 (3): 957–967. PMID 16417387. doi:10.1021/ja056575j.
^ 48.048.1
R. W. Alder; P. R. Allen; S. J. Williams. Stable carbenes as strong bases. Chem. Commun. 1995, (12): 1267. doi:10.1039/c39950001267.
^T. A. Taton; P. Chen. A Stable Tetraazafulvalene. Angew. Chem. Int. Ed. 1996, 35 (9): 1011–1013. doi:10.1002/anie.199610111.
^Alder, Roger W.; Blake, Michael E.; Chaker, Leila; Harvey, Jeremy N.; Paolini, François; Schütz, Jan. When and How Do Diaminocarbenes Dimerize?. Angew. Chem. Int. Ed. 2004, 43 (44): 5896–5911. PMID 15457494. doi:10.1002/anie.200400654.
^Enders, D.; Breuer, K.; Runsink, J.; Teles, J.H. Chemical Reactions of the Stable Carbene 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene. Liebigs Ann. Chem. 1996, 1996 (12): 2019–2028. doi:10.1002/jlac.199619961212.
^ 54.054.1Enders, D.; Breuer, K.; Teles, J.H.; Ebel, K. 1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene – applications of a stable carbene in synthesis and catalysis. J. Prakt. Chem. 1997, 339: 397–399. doi:10.1002/prac.19973390170.
^Wolf, J; Böhlmann, W; Findeisen, M; Gelbrich, T; Hofmann, HJ; Schulze, B. Synthesis of stable isothiazole carbenes. Angew. Chem. Int. Ed. 2007, 46 (17): 3118–3121. PMID 17372997. doi:10.1002/anie.200604305.
^Gernot Boche; Christof Hilf; Klaus Harms; Michael Marsch; John C. W. Lohrenz. Crystal Structure of the Dimeric (4-tert-Butylthiazolato)(glyme)lithium: Carbene Character of a Formyl Anion Equivalent. Angew. Chem. Int. Ed. 1995, 34 (4): 487–489. doi:10.1002/anie.199504871.
^ 60.060.1D. Enders; H. Gielen; G. Raabe; J. Runsink; J. H. Teles. Synthesis and Stereochemistry of the First Chiral (Imidazolinylidene)- and (Triazolinylidene)palladium(II) Complexes. Chem. Ber. 1996, 129 (12): 1483–1488. doi:10.1002/cber.19961291213.
^ 61.061.1
Wolfgang A. Herrmann; Martina Elison; Jakob Fischer; Christian Köcher; Georg R. J. Artus. Metal Complexes of N-Heterocyclic Carbenes – A New Structural Principle for Catalysts in Homogeneous Catalysis. Angew. Chem. Int. Ed. 1995, 34 (21): 2371–2374. doi:10.1002/anie.199523711.
^ 62.062.1
Wolfgang A. Herrmann; Lukas J. Goossen; Christian Köcher; Georg R. J. Artus. Chiral Heterocylic Carbenes in Asymmetric Homogeneous Catalysis. Angew. Chem. Int. Ed. 1996, 35 (23–24): 2805–2807. doi:10.1002/anie.199628051.
^
M. Scholl; T. M. Trnka; J. P. Morgan; R. H. Grubbs. Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands. Tetrahedron Lett. 1999, 40 (12): 2247–2250. doi:10.1016/S0040-4039(99)00217-8.
^ Han Vinh Huynh; et al. 13C NMR Spectroscopic Determination of Ligand Donor Strengths Using N-Heterocyclic Carbene Complexes of Palladium(II). Organometallics. 2009, 28 (18): 5395–5404. doi:10.1021/om900667d.
^Roger W. Alder; Michael E. Blake; Simone Bufali; Craig P. Butts; A. Guy Orpen; Jan Schütz; Stuart J. Williams. Preparation of tetraalkylformamidinium salts and related species as precursors to stable carbenes. J. Chem. Soc., Perkin Trans. 1. 2001, (14): 1586–1593. doi:10.1039/b104110j.
^D. Kovacs; M. S. Lee; D. Olson; J. E. Jackson. Carbene-to-Carbene Oxygen Atom Transfer. J. Am. Chem. Soc. 1996, 118 (34): 8144–8145. doi:10.1021/ja961324j.
^Michael Otto; Salvador Conejero; Yves Canac; Vadim D. Romanenko; Valentyn Rudzevitch; Guy Bertrand. Mono- and Diaminocarbenes from Chloroiminium and -amidinium Salts: Synthesis of Metal-Free Bis(dimethylamino)carbene. J. Am. Chem. Soc. 2004, 126 (4): 1016–1017. PMID 14746458. doi:10.1021/ja0393325.