绝对几何
绝对几何(英文:Absolute Geometry),是按照除去平行公理(以及任意一种与其等效的公理)的欧式几何系统所构造的一种几何学。传统意义上,指只使用欧式几何中的前四条公理的系统。[1]此术语由鲍耶·亚诺什于1832年首次使用。[2]此系统有时也被称作中立几何[註 1],因为它对于平行公理持中立态度。由于仅使用欧式几何中的前四条公理并不足以公理化欧式几何,因此现在一般用其他系统代替此系统(如除去平行公理的希尔伯特公理)。 性质在《几何原本》中,前二十八个命题与第三十一个命题没有使用平行公理,因此它们同样适用于绝对几何。此系统同样可以证明萨凯里 - 勒让德定理(三角形的内角和为一百八十度)和外角定理(三角形的任意一角的外角等于另外两个内角之和)。 注释
参考引用
来源
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia