莱文伯格-马夸特方法莱文伯格-马夸特方法(英語:Levenberg–Marquardt algorithm)能提供數非線性最小化(局部最小)的數值解。此演算法能藉由執行時修改參數達到結合高斯-牛顿算法以及梯度下降法的優點,並對兩者之不足作改善(比如高斯-牛顿算法之反矩陣不存在或是初始值離局部極小值太遠)。[1] 問題描述假設 是一個從 的非线性映射,也就是說 且 , 那麼:
而我們的目的就是希望任意給定一個 以及合理的初始值 ,我們能找到一個 ,使得 盡量小(局部極小),其中 。 解法像大多數最小化的方法一樣,這是一個迭代的方法。首先根據泰勒展开式我們能把 寫為下面的近似,這有兩個好處:第一是線性、第二是只需要一階微分。 其中是的雅可比矩阵。對於每次的迭代我們這麼作:假設這次 iteration 的點是 ,我們要找到一個 讓 最小。 根據投影公式我們知道當下面式子被滿足的時候能有最小誤差: 我們將這個公式略加修改得到: 就是莱文伯格-马夸特方法。如此一來 大的時候這種算法會接近最速下降法,小的時候會接近高斯-牛顿方法。為了確保每次 長度的減少,我們這麼作:先採用一個小的 ,如果 長度變大就增加 。 這個演算法當以下某些條件達到時結束迭代:
參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia