蛇引理在同調代數中,蛇引理是構造長正合序列的關鍵工具,此引理在任何阿貝爾範疇中皆成立。依此構造的同態通常稱作連結同態。 敘述使得每一橫列均為正合序列。此時存在一個聯繫的核與上核的正合序列:
引蛇出洞為了理解蛇引理的由來,觀察下圖: 並注意到:引理給出的正合序列可在此圖中畫成倒S狀的蛇形。 構造連接同態核間的同態與上核間的同態很容易構造,它們由該圖的交換性自然導出,正合性也可以直接代定義驗證。重點在於連接同態及序列在該處的正合性。 對於模範疇的情形,同態可如是構造: 選定,並視之為的元素;由於是滿射,存在滿足。由圖的交換性,我們有
於是。由於底部的橫列正合,存在使得。置。今須驗證是明確定義的,即不依賴之選取;此外尚須驗證它是個同態,及序列的正合性。 一旦完成以上幾點驗證,即證明了此引理在模範疇的情形。對一般情形,可利用核與上核的泛性;此外也能使用Mitchell嵌入定理,此定理斷言任一阿貝爾範疇都能遷入某個環的-模範疇。 函子性在應用上,我們常常需要長正合列的「函子性」或曰「自然性」(就自然變換意義言之);各種建構的函子性也是同調代數的基本哲學。此函子性可由蛇引理的函子性導出。 設交換圖 的橫列均為正合,則可利用蛇引理兩次,一次在「前」一次在「後」,產生兩條長正合序列;它們經由以下交換圖相連繫: 文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia