複小波變換複小波變換是針對標準離散傅立葉轉換在複數上的延伸形式。事實上,複小波變換是一個二維的小波轉換,並且可以提供多尺度、有用的影像結構特性的分析。此外,他也具備了振幅不會隨著平移而改變的特性。然而,這種轉換具備了一個缺點,就是相對於原本的離散傅立葉轉換,會有多餘的 (這裡的是指原始被傳遞訊號的維度)維度存在。 一般而言,複小波變換最早被使用是在1995年,由J.M.Lina和L. Gagnon,基於Daubechies正交濾波器的架構,用以進行影像處理[1][2]。並於1997年被劍橋大學的Nick Kingsbury教授歸納出一個較為一般性的形式。 [3][4][5] 在電腦視覺的領域中,人們可以藉由利用同時考慮區域影像的概念,快速的將目標集中存在人們有興趣的物件之區域上。然後,再使用複小波變換去計算隱含在圖像中額外的特性,這些特性對於整張圖像中或許是不必要的,但是對於精確的偵測及辨認小物件是有用的。同理,複小波變換亦可被應用在三維空間中,加上獨立成分分析,可以藉由貝斯資訊標準[1][永久失效連結]萃取出其中獨立的成分。 優點
Dual-Tree 複小波變換Dual-Tree複小波變換會利用兩個不同的複小波變換的解構,合成一個新的變換。此外,如果一個複小波變化的濾波器是特別設計(與另一個不同),則單靠一個複小波變換是有可能同時有實數和虛數的係數。 ![]() 使用Dual-Tree複小波變換可以提供額外的資訊方便分析,不過為此也要付出額外的計算資源。同時,如前所述,他也可以提供類平移不變性,所以仍然可以對訊號對完整的重建。 對於複小波變換的濾波器設計所需要具備的特性如下:
參見參考
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia