赫斯特指数
赫斯特指数(英語:Hurst exponent)以英国水文学家哈罗德·赫斯特命名,起初被用来分析水库与河流之间的进出流量,后来被广泛用于各行各业的分形分析。利用Hurst参数可以表征网络流量的自相似性,Hurst参数越大,说明流量的自相似程度就越高,也就是说网络的业务流量在很长的时间内都具有长相关性,这主要是由于网络流量的突发性造成的。现有的文献给出的估计方法主要是两大类:时域法和频域法,其中时域法包括R/S分析法[1]、时间方差图法[2][3]、IDC法,频域法包括Whittle的最大似然估计[4]、小波法[5]等。常用的Hurst估值算法都有不同的适用条件,不能广泛的应用于各种情况,因为每一种算法在时域或者是频域的范围内应用了求和平均的方法,这样就会使得时间序列的高突发可变的细节信息丢失,从而导致出估算结果为负值,增大了估计误差。 应用时域法是直接对时间序列进行处理,并用最小二乘法拟合估计出Hurst参数,频域法通过利用FFT对时间序列的谱密度进行估计。时域法及频域法都要求整个观察时间段内全部的时间序列,当时间范围较大时,就需要大量的序列样本和高采样率,同时很难观察到Hurst参数的时变性。同时,对有限长度的时间序列进行Hurst估算,结果虽然可以反映出网络流量局部的突发性,但是由于估值算法容易受到各种因素的干扰而产生误差,并且由于相邻的估算值之间没有数据关联,就不能够体现出突发的渐进性。因此如何估算出无限增长的流量的突发性,同时又能够体现出网络流量变化的全局渐进性,并且还能够体现出局部变化的时变性,这些都需要做进一步的研究。比如,在IDC基础上定义复数取值的赫斯特指数等等。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia