转置矩阵
![]() 在線性代數中,矩陣A的轉置(英語:transpose)是另一个矩陣AT(也寫做Atr, tA, At或A′)由下列等價動作建立:
形式上說,m × n矩陣A的轉置是n × m矩陣
注意:(轉置矩陣)與(逆矩陣)不同。 例子性质对于矩阵A, B和标量c转置有下列性质:
特殊转置矩阵其转置等于自身的方块矩阵叫做对称矩阵;就是说A是对称的,如果
其转置也是它的逆矩阵的方块矩阵叫做正交矩阵;就是说G是正交的,如果
其转置等于它的负矩阵的方块矩阵叫做斜对称矩阵;就是A是斜对称的,如果
复数矩阵A的共轭转置,写为AH,是A的转置后再取每个元素的共轭复数: 线性映射的转置如果f: V→W是在向量空间V和W之间非退化双线性形式的线性映射,我们定义f的转置为线性映射tf : W→V,确定自 这裡的,BV和BW分别是在V和W上的双线性形式。一个映射的转置的矩阵是转置矩阵,只要基是关于它们的双线性形式是正交的。 在复向量空间上,经常用到半双线性形式来替代双线性形式。在这种空间之间的映射的转置可类似的定义,转置映射的矩阵由共轭转置矩阵给出,如果基是正交的。在这种情况下,转置也叫做埃尔米特伴随。 如果V和W没有双线性形式,则线性映射f: V→W的转置只能定义为在对偶空间W和V之间的线性映射 tf : W*→V*。 参考资料外部链接 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia