边值问题![]() 在微分方程中,边值问题是一个微分方程和一组称之为边界条件的约束条件。边值问题的解通常是符合约束条件的微分方程的解。 物理学中经常遇到边值问题,例如波动方程等。許多重要的边值问题屬於Sturm-Liouville問題。這類問題的分析會和微分算子的本徵函數有關。 在实际应用中,边值问题应当是适定的(即:存在解,解唯一且解會隨著初始值連續地變化)。許多偏微分方程領域的理論提出是為要證明科學及工程應用的許多边值问题都是适定問題。 最早研究的边值问题是狄利克雷问题,是要找出调和函数,也就是拉普拉斯方程的解,後來是用狄利克雷原理找到相關的解。 說明边值问题類似初值問題,边值问题的條件是在區域的邊界上,而初值問題的條件都是在獨立變數及其導數在某一特定值時的數值(一般是定義域的下限,所以稱為初值問題)。 例如獨立變數是時間,定義域為[0,1],边值问题的條件會是在及時的數值,而初值问题的條件會是時的及 之值。 若鐵棒的一端為絕對零度,另一端溫度為水的凝固點,要找到鐵棒溫度隨位置的變化即為一個边值问题。 若問題和時間和空間都有關,边界條件需為某一個特定點下所有時間對應的值,以及某一個特定時間時所有位置對應的值。 以下是一個边值问题的例子 要求解滿足以下邊界條件的函數 若沒有邊界條件,以上微分方程的通解是 根據邊界條件,可得 可以得到的結論。根據邊界條件,可得 因此。因此可以找到滿足上述邊界條件的唯一解,即為 边值问题的種類根据条件的形式,边值条件分以下三类[1]:
边值条件也可以根據边值问题對應的微分算子來分類:若是使用椭圆算子,則問題為椭圆边值问题;使用雙曲線算子,則問題為雙曲線边值问题。依微分算子還可以將問題再細分為線性及非線性等。 参考文献参见 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia