通用近似定理在人工神经网络的数学理论中, 通用近似定理(或稱萬能近似定理)指出人工神經網络近似任意函數的能力[1]。 通常此定理所指的神經網路爲前饋神經網路,並且被近似的目標函數通常爲輸入輸出都在歐幾里得空間的連續函數。但亦有研究將此定理擴展至其他類型的神經網路,如卷積神經網路[2][3]、放射狀基底函數網路[4]、或其他特殊神經網路[5]。 此定理意味着神經網路可以用來近似任意的復雜函數,並且可以達到任意近似精準度。但它並沒有說明要如何選擇神經網絡參數(權重、神經元數量、神經層層數等等)來達到想近似的目標函數。 历史1900年代1950年代至60年代苏联数学家安德烈·柯尔莫哥洛夫與學生弗拉基米尔·阿诺尔德在1950年代及60年代期間,證明多元函數可分解為以下形式(e.g. Kolmogorov–Arnold表示定理):
1980年代後乔治·西本科于1989年证明了單一隱藏層、任意宽度、並使用S型函數作爲激勵函數的前饋神經網路的通用近似定理[6]。科特·霍尼克(英語:Kurt Hornik)在1991年证明 ,激勵函數的選擇不是關鍵,前饋神經網路的多層神經層及多神經元架構才是使神经网络有成为通用逼近器的關鍵[7]。 2020 量子计算量子神经网络可以用电路量子计算机的不同数学工具来表示,从量子感知器到变分量子电路,都基于量子逻辑门的组合。变分量子电路基于参数电路,不涉及神经网络。相反,量子感知器能够设计具有与前馈神经网络相同结构的量子神经网络,前提是每个节点的阈值行为不涉及量子态的崩溃,即没有测量过程。 2022 年,这种为量子神经网络提供激活函数行为的免测量构建模块已经被设计出来 [8]。 量子电路返回与量子比特相关的 -1 到 +1 区间内的压缩函数的任意近似值。这种设计任意量子激活函数的方法通常可以实现量子多感知器和量子前馈神经网络。 參見参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia