阿依熱爾曼猜想阿依熱爾曼猜想(Aizerman's conjecture)或阿依熱爾曼問題猜想(Aizerman problem)是非線性控制的猜想,認為一線性系統有非線性的回授,不過是在一個扇形的線性區間內,若線性系統在此扇形線性區間都穩定,則整個系統都會穩定。 阿依熱爾曼猜想在一維系統成立,在二維系統是全域穩定的充份必要條件,而針對維度大於3的情形,這個猜想已找到反證[1][2],不過後來因此推導出(有效的)非線性控制全域穩定性準則。 阿依熱爾曼猜想的數學描述考慮一個系統,其中包括一個純量非線性的函數
阿依熱爾曼猜想就是指此系統在全域穩定(有唯一穩定點,而且是全域吸引子)若所有在f(e)=ke, k ∈(k1,k2)下的線性系統都是漸近穩定。 存在阿依熱爾曼猜想的反例,非線性函數在線性穩定的範圍內,且系統除了唯一的穩定平衡點外,還有穩定的週期解—隱蔽振盪。[2][3][4][5] 卡爾曼猜想是強化版本的阿依熱爾曼猜想,在非線性回授的部份要求回授的微分需在線性穩定區間內,結果也存在反例。 參考資料
延伸閱讀
外部連結
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia