阿廷-韦德伯恩定理在抽象代数学中,阿廷-韦德伯恩定理(英語:Artin–Wedderburn theorem)是半单环及半单代数的分类定理。该定理指出,任何半单的阿廷环都同构于有限个除环上的有限阶矩阵环的直积,且这些除环以及与之对应的矩阵的阶数在相差一个置换的意义下是唯一确定的。[1] 历史1908年,约瑟夫·韦德伯恩发表了题为《论超复数》(英語:On hypercomplex numbers)的论文。该文中的定理23指出:任意一个单代数都可以表示成一个本原代数(即可除代数)和单矩阵代数的直积。[2]利用现在的术语,该定理可以表述为:任何单代数都同构于某个除环上的有限阶矩阵环。1926年,埃米尔·阿廷将这一结论推广至半单环。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia