隨機抽樣一致
随机抽样一致算法(RANdom SAmple Consensus,RANSAC)。它采用迭代的方式从一組包含離群的被觀測數據中估算出數學模型的參數。 RANSAC是一個非确定性算法,在某種意義上說,它會產生一個在一定概率下合理的結果,而更多次的迭代会使这一概率增加。此RANSAC算法在1981年由Fischler和Bolles首次提出。 RANSAC的基本假設是
範例這裡用一個簡單的例子來說明,在一組數據點中找到一條最適合的線。假設,此有一組集合包含了內點群以及外點群,其中內點群包含可以被擬合到線段上的點,而外點群則是無法被擬合的點。如果我們用簡單的最小二乘法來找此線,我們將無法得到一條適合於內點群的直線,因為最小二乘法會受外點群影響而影響其結果。而用RANSAC,可以只由內點群來計算出模型,而且概率還夠高。然而,RANSAC無法保證結果一定最好,所以必須小心選擇參數,使其能有足夠的概率。
概述
這裡有幾個問題
參數決定假設每個點是真正內點群的機率是 ,则:
通常我們不知道 是多少, 是所選擇的 個點都是內點群的機率, 是所選擇的 個點至少有一個不是內點群的機率, 是表示重複 次都沒有全部的 個點都是內點群的機率,假設算法跑 次以後成功的機率是 ,那麼: 所以如果希望成功機率高,, 當 不變時, 越大, 越大, 當 不變時, 越大,所需的 就越大, 通常 未知,所以 選小一點比較好。 應用RANSAC算法经常用在计算机视觉领域,例如,对于一对立体相机,同时求解其对应点问题和估计它们之间的基础矩阵。 参考资料
外部链接
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia