非互補歐拉商數非互補歐拉商數(noncototient)是指一個正整數n,不存在任一個整數m使下式成立: 其中表示歐拉函數(totient function),是小於m的正整數中和m互質整數的個數。稱為m的互補歐拉商數(cototient)(OEIS數列A051953)。例如小於6的正整數中,和6互質的只有一個數字5,因此6的歐拉函數為1,而互補歐拉商數為6-1=5。 而非互補歐拉商數就是指不在互補歐拉商數值域內的整數,若正整數n是非互補歐拉商數,表示所有整數m的互補歐拉商數都不等於n。 頭幾個非互補歐拉商數是:
另外,n的互補歐拉商數是
目前已知的非互補歐拉商數均為偶數,因此猜想所有的非互補歐拉商數均為偶數,猜想中有用到有經過修改的哥德巴赫猜想:若偶數n可以表示為二個相異質數p及q的和,則 依照哥德巴赫猜想,所有大於6的偶數都可以表示為二個相異質數p及q的和,此偶數減1所得的奇數就是pq的互補歐拉商數,因此很可能所有大於5的奇數都是互補歐拉商數,而未考慮到的奇數有1,3,5,而, ,這些數也都是互補歐拉商數,因此很可能所有的非互補歐拉商數均為偶數。 Erdős和Sierpinski曾猜想存在有無限多個非互補歐拉商數,後來Browkin和Schinzel在1995年證實此一猜想,他們證明無窮數列的每一項都是非互補歐拉商數,Flammenkamp和Luca在2000年提出了其他形式大致接近的範例。 相關條目參考資料
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia