鞍點![]() 鞍點(英語:Saddle point)指一個非局部極值點的駐點。鞍點這詞語來自於不定二次型的二維圖形,像個馬鞍:在x-軸方向往上曲,在y-軸方向往下曲。 数学描述廣義而說,一個光滑函數(曲線、曲面或超曲面)的鞍點鄰域的曲線、曲面或超曲面,都位於马鞍点點的切線的不同邊。 检验检验二元实函数F(x,y)的驻点是不是鞍点的一个简单的方法,是计算函数在这个点的黑塞矩阵:如果該矩陣行列式小于0,则该点就是鞍点。例如,函数在驻点的黑塞矩阵是: 此矩阵有两个特征值2,-2。它的行列式小於0,因此,这个点是鞍点。然而,这个条件只是充分条件,例如,对于函数点是一个鞍点,但函数在原点的黑塞矩阵是零矩阵,并不小於0。 对于一般的多元函数,点是鞍点的必要条件是该点的黑塞矩阵不定。 性质![]() 在一維空間裏,鞍點是駐點,也是反曲點。因為函數圖形在鞍點由凸轉凹,或由凹轉凸,鞍點不是區域性極點。 设一個只有一個變數的函數。這函數在鞍點的一次導數等於零,二次導數換正負符號·例如,函數 就有一個鞍點在原點。 ![]() 设一個擁有兩個以上變數的函數。它的曲面在鞍點好像一個馬鞍,在某些方向往上曲,在其他方向往下曲。在一幅等高線圖裏,一般來說,當兩個等高線圈圈相交叉的地點,就是鞍點。例如,兩座山中間的山口就是一個鞍點。 参见参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia