BFGS算法
在数值优化中, Broyden–Fletcher–Goldfarb–Shanno(BFGS)算法是一种求解无约束非线性优化问题的迭代算法。 [1]和相关的Davidon–Fletcher–Powell算法类似,BFGS算法通过利用曲率信息对梯度进行预处理来确定下降方向。曲率信息则是通过维护一个使用广义的割线法逐步近似的关于损失函数的Hessian矩陣来获得。 算法从起始点和初始的Hessian矩阵,重复以下步骤,会收敛到优化问题的解:
表示要最小化的目标函数。可以通过检查梯度的范数 来判斷收敛性。如果初始化为,第一步将等效于梯度下降,但接下来的步骤会受到近似于Hessian矩阵的的调节。 拓展阅读参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia