Lambda立方体![]() 在数理逻辑和类型论中,λ-立方是探索 Coquand 的构造演算中细化轴的框架,以简单类型 λ-演算(在立方图中写作 λ→)作为原点放在立方体的顶点,而构造演算(即高阶依赖类型化 λ-演算,在图中写作 λPω)则是其空间对顶点。立方体的每个轴都表示一种新的抽象形式:
所有的八种演算包含了最基本的抽象形式,值依赖值即简单类型 λ-演算中的普通函数。此立方中最丰富的演算即构造演算,它带有所有三种抽象。所有八种演算都是强规范化的。 然而子类型并未展示在此立方中,尽管像 这样以高阶有界量化闻名的,结合了子类型和多态的系统具有实际意义,它可被进一步推广为有界类型构造器。进一步扩展到允许纯函数对象的定义;这些系统通常在λ-立方的论文发表后才被开发出来。[1] 此立方的思想来源于Henk Barendregt (1991)。就此立方的所有角而言,纯类型系统的框架涵盖了λ-立方,其它一些系统也可表示为此通用框架的实例。[2] 此框架的出现比λ-立方早上几年。在 Barendregt 1991年的论文中,他也在此框架中定义了λ-立方的角。 Olivier Ridoux 在他的 Habilitation à diriger les recherches Lambda-Prolog de A à Z... ou presque 中给出了此立方的一个截边角后的模版(p. 70) 的两种表示,一种将此立方表示为一个八面体,其中 8 个顶点以面代替,另一种将它表示为一个十二面体,其中 12 条棱则以面代替。 参见
注记参考来源扩展阅读
外部链接
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia