MV-代数在纯数学分支抽象代数中,MV-代数(多值代数)是带有二元运算 、一元运算 和常量 的满足特定公理的代数结构。多值逻辑是 MV-代数的模型。 定义设 A 是个集合。MV-代数是代数结构,带有型 的标识(signature) ,它满足如下恒等式:
备注:通过前三个公理 是交换幺半群。 或者作为替代,MV-代数是一个剩余格 满足额外恒等式
Hájek (1998)描述了这两个公式的等同。 例子一个简单的例子是 ,带有定义为 和 的运算。 讨论在多值逻辑中,给定一个 MV-代数 A,一个 A-賦值就是从命题演算中公式的集合到 MV-代数的函数。如果对于所有 A-賦值这个函数把一个公式映射到 1(或 0),则这个公式是一个 A-重言式。因此对于无穷值逻辑(比如模糊逻辑、武卡谢维奇逻辑),我们设 [0,1] 是 A 的下层集合来获得 [0,1]-賦值和 [0,1]-重言式(经常就叫做賦值和重言式)。 Chang 发明 MV-代数来研究波蘭數學家扬·武卡谢维奇(Jan Łukasiewicz)在 1920 年介入的多值逻辑。Chang 的完备定理(1958, 1959) 声称任何在 [0,1] 区间成立的 MV-代数等式也在所有 MV-代数中成立。通过这个定理,证明了无穷值的武卡谢维奇逻辑可以被 MV-代数所刻画。后来同样适用于模糊逻辑。这类似于在 {0,1} 成立的布尔代数等式在任何布尔代数中也成立,布尔代数因此刻画了标准二值逻辑。 引用
外部链接
参见 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia