NL完全
在计算复杂性理论中,NL完全是由全体对NL类完备的语言构成的复杂性类。也就是说,NL完全的语言是NL类中最“难解”和最“有力”的语言。如果有某个确定性的方法可以在对数空间内解决一个NL完全问题,那么就会有NL=L。 定义在全体判定问题中,NL类包含了那些可以用非确定型图灵机在对数空间内解决的问题。这里的图灵机要求有一条只读输入带,和另一条空间上限与输入长度的对数成比例的读写带。类似地,L类包含了可以用同样结构的确定型图灵机解决的判定问题。由于这种图灵机的格局数目只有多项式级别,因此NL和L都是P的子集。 正式地说,一个问题是NL完全的,当且仅当它属于NL,并且所有NL中的判定问题都可以Log-空间规约到它。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia