Гіпотэза ПуанкарэГіпо́тэза Пуанкарэ́ — адна з самых вядомых задач тапалогіі. Яна дае дастатковую ўмову таго, што прастора з'яўляецца трохвымернаю сфераю з дакладнасцю да дэфармацыі. ФармулёўкаГіпотэза ПуанкарэУ зыходнай форме гіпотэза Пуанкарэ сцвярджае:
Абагульненая гіпотэза ПуанкарэАбагульненая гіпотэза Пуанкарэ сцвярджае:
Зыходная гіпотэза Пуанкарэ з'яўляецца асобным выпадкам абагульненай гіпотэзы пры n = 3. Схема доказуПаток Рычы — гэта пэўнае ўраўненне ў частковых вытворных , падобнае на ўраўненне цеплаправоднасці . Ён дазваляе дэфармаваць рыманаву метрыку на мнагастайнасці, але ў працэсе дэфармацыі могуць утварацца «сінгулярнасці» — пункты, у якіх крывізна імкнецца да бесканечнасці, і дэфармацыю немагчыма працягнуць. Асноўны крок у доказе заключаецца ў класіфікацыі такіх сінгулярнасцей у трохмерным арыентаваным выпадку. Пры падыходзе да сінгулярнасці паток спыняюць і ажыццяўляюць «хірургію» — выкідваюць малую звязную кампаненту ці выразаюць «шыю» (г. зн. адкрытую вобласць дыфеаморфную прамому здабытку ), а атрыманыя дзве дзіркі заклейваюць двума шарамі так, што метрыка атрыманай мнагастайнасці становіцца дастаткова гладкаю — пасля чаго працягваюць дэфармацыю ўздоўж патоку Рычы. Працэс, апісаны вышэй, называецца «паток Рычы з хірургіяй». Класіфікацыя сінгулярнасцей дазваляе заключыць, што кожны «выкінуты кавалак» дыфеаморфны сферычнай прасторавай форме . Пры доказе гіпотэзы Пуанкарэ пачынаюць з адвольнай рыманавай метрыкі на адназвязнай трохмернай мнагастайнасці і прымяняюць да яе паток Рычы з хірургіяй. Важным крокам з'яўляецца доказ таго, што ў выніку такога працэсу «выкідваецца» ўсё. Гэта значыць, што зыходную мнагастайнасць можна прадставіць як набор сферычных прасторавых форм , злучаных адна з адною трубкамі . Падлік фундаментальнае групы паказвае, што дыфеаморфная звязнай суме набору прасторавых форм , і больш таго, усе трывіяльныя. Такім чынам, з'яўляецца звязнаю сумаю набору сфер, г.зн. сфераю. ГісторыяУ 1900 годзе Пуанкарэ выказаў здагадку, што трохмерная мнагастайнасць са ўсімі групамі гамалогій як у сферы гомеаморфнае сферы. У 1904 годзе ён жа знайшоў контрпрыклад, які цяпер называецца сфераю Пуанкарэ , і сфармуляваў канчатковы варыянт сваёй гіпотэзы. Спробы даказаць гіпотэзу Пуанкарэ прывялі да шматлікіх новых вынікаў у тапалогіі мнагастайнасцей. Доказы абагульненай гіпотэзы Пуанкарэ для n ⩾ 5 атрыманы ў пачатку 1960—1970-х амаль адначасова Смейлам, незалежна і іншымі метадамі Столінгсам (для n ⩾ 7, яго доказ быў пашыраны на выпадкі n = 5 і 6 Зееманам ). Доказ значна цяжэйшага выпадку n = 4 быў атрыман толькі ў 1982 годзе Фрыдманам. З тэарэмы Новікава аб тапалагічнай інварыянтнасці характарыстычных класаў Пантрагіна вынікае, што існуюць гоматапічна эквівалентныя, але не гомеаморфныя мнагастайнасці ў высокіх размернасцях. Доказ зыходнай гіпотэзы Пуанкарэ (і больш агульнай гіпотэзы Цёрстана) быў знойдзены толькі ў 2002 годзе Рыгорам Перэльманам. Пазней доказ Перэльмана быў правераны і прадстаўлены ў разгорнутым выглядзе сама меней трыма групамі навукоўцаў[1]. Доказ выкарыстоўвае паток Рычы з хірургіяй і ў многім прытрымліваецца плана, намечанага Хамільтанам , які таксама першым прымяніў паток Рычы. Прызнанне і ацэнкі
Гл. таксамаЗноскі
Літаратура
|
Portal di Ensiklopedia Dunia