Кальцо (алгебра)Кальцо́, ці ко́лца[1] — мноства R з дзвюма аперацыямі, якія ўмоўна называюцца «складаннем» (" ") і «множаннем» (" "), прычым адносна складання R ёсць абелева група, а «множанне» ўзгоднена са «складаннем» паводле размеркавальнага закона. Прыкладам кальца з'яўляецца мноства цэлых лікаў разам са звычайнымі складаннем і множаннем. Адмысловым выпадкам кальца з'яўляецца поле, якое адметна найперш тым, што для любога ненулявога элемента існуе адваротны (адносна множання), у выніку чаго становіцца магчымым вызначыць аперацыю дзялення. А вось у кальцы, у агульным выпадку, гэта не так. Строгае азначэннеАзначэнне кальцаКальцо́м называецца мноства R з аперацыямі складання (" ") і множання (" "), якія задавальняюць наступныя ўмовы:
Заўвага 1: у азначэнні кальца на аперацыю «множання» накладваецца толькі адна ўмова — размеркавальны закон (правы і левы). І таму, ўвогуле кажучы, у кальцы можа не існаваць адзінкі (адносна «множання»), «множанне» можа быць неперамяшчальным (некамутатыўным), могуць існаваць дзельнікі нуля і г.д. Заўвага 2: наяўнасць двух размеркавальных законаў неабходна, таму што «множанне» можа быць неперамяшчальным (г.зн. значэнне «здабытку» залежыць ад парадку множнікаў). Аксіёмы кальцаМноства R з аперацыямі складання (" ") і множання (" ") з'яўляецца кальцом, калі і толькі калі яно разам з аперацыямі задавальняе сістэму аксіём, якія называюцца аксіёмамі кальца:
Заўвага: дзеля зручнасці, у фармулёўках аксіём прапушчаны словы ўзору "для любых ". Зноскі
Літаратура
|
Portal di Ensiklopedia Dunia