Тапалагічная група
Тапалагічная група (непарыўная група) — гэта[1] група, якая адначасова з’яўляецца тапалагічнай прасторай, прычым множанне элементаў групы G × G → G і аперацыя ўзяцця адваротнага элемента G → G з’яўляюцца непарыўнымі ў тапалогіі гэтай прасторы. З прыведзенага азначэння непасрэдна вынікае, што аперацыі левага і правага зруху, а таксама аперацыя спалучэння, якія традыцыйна абазначаюцца літарамі l, r, a і вызначаныя роўнасцямі
прадстаўляюць сабой гомеамарфізмы прасторы G на сябе. Ізамарфізм тапалагічнай групы G на тапалагічную групу H — гэта[2] біектыўнае адлюстраванне групы G на H, якое адначасова з’яўляецца ізамарфізмам структуры групы ў G на структуру групы ў H і гомеамарфізмам G на H. Паняцце тапалагічнай групы абагульняе паняцце групы Лі; апошняе патрабуе, каб аперацыі множання элементаў і ўзяцця адваротнага элемента былі не толькі непарыўнымі, але аналітычнымі ці галаморфными (пры гэтым на групе ўводзіцца не толькі тапалогія, але і структура аналітычнай або камплекснай мнагастайнасці). Прыклады тапалагічных груп
Гл. таксамаЗноскі
Літаратура
Спасылкі
|
Portal di Ensiklopedia Dunia