Цэнтральная сіметрыя

Цэнтральнай сіметрыяй (часам цэнтральнай інверсіяй) адносна пункта A называюць пераўтварэнне прасторы, якое пераводзіць пункт X у такі пункт X`, што A — сярэдзіна адрэзка XX`. Цэнтральная сіметрыя з цэнтрам у пункце A звычайна абазначаецца праз , у той час як абазначэнне можна пераблытаць з восевай сіметрыяй. Фігура называецца сіметрычнай адносна пункта A, калі для кожнага пункта фігуры сіметрычны ёй пункт адносна пункта A таксама належыць гэтай фігуры. Пункт A называецца цэнтрам сіметрыі фігуры. Кажуць таксама, што фігура валодае цэнтральнай сіметрыяй.

Іншыя назвы гэтага пераўтварэння — сіметрыя з цэнтрам A. Цэнтральная сіметрыя ў планіметрыі з'яўляецца асобным выпадкам павароту, дакладней, з'яўляецца паваротам на 180 градусаў.

Фармальны запіс

  • Няхай G — аператар цэнтральнай сіметрыі, пункт A зададзены радыус-вектарам , а пункт, які пераўтвараецца, задаецца радыус-вектарам . Тады мае месца наступная формула:

Звязаныя азначэнні

Калі фігура пераходзіць у сябе пры сіметрыі адносна пункта A, то A называюць цэнтрам сіметрыі гэтай фігуры.

Агульныя ўласцівасці

  • У n-мернай прасторы калі пераўтварэнне R з'яўляецца паслядоўным адлюстраваннем адносна n ўзаемна перпендыкулярных гіперплоскасцей, то R — цэнтральная сіметрыя адносна агульнага пункта гэтых гіперплоскасцей. Акрамя таго:
  • У цотнамерных прасторах цэнтральная сіметрыя захоўвае арыентацыю, а ў няцотнамерных — не захоўвае.
  • Цэнтральную сіметрыю можна прадставіць таксама як гоматэтыю з цэнтрам A і каэфіцыентам −1 ().
  • Кампазіцыя дзвюх цэнтральных сіметрый — паралельны перанос на падвоены вектар з першага цэнтра ў другі:

Сіметрыя на прамой

У аднамернай прасторы (на прамой) цэнтральная сіметрыя з'яўляецца люстраною сіметрыяй.

На плоскасці

На плоскасці (у 2-мернай прасторы) сіметрыя з цэнтрам A ўяўляе сабой паварот на 180° з цэнтрам A (). Цэнтральная сіметрыя на плоскасці, як і паварот, захоўвае арыентацыю.

У трохмернай прасторы

Цэнтральную сіметрыю ў трохмернай прасторы называюць таксама сферычнай сіметрыяй.

Яе можна прадставіць як кампазіцыю адлюстравання адносна плоскасці, якая праходзіць праз цэнтр сіметрыі, з паваротам на 180° адносна прамой, якая праходзіць праз цэнтр сіметрыі і перпендыкулярнай вышэйзгаданай плоскасці адлюстравання.

У чатырохмернай прасторы

У 4-мернай прасторы цэнтральную сіметрыю можна прадставіць як кампазіцыю двух паваротаў на 180° вакол дзвюх узаемна перпендыкулярных плоскасцей (перпендыкулярных ў 4-мерным сэнсе), якія праходзяць праз цэнтр сіметрыі.

Гл. таксама

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya