ウェアリングの問題 (英: Waring's problem) は、全ての自然数k ≥ 2 に対して、「全ての自然数は s 個の非負の k 乗数の和で表される」という性質を満たす整数 s が存在するかという問題である。
この問題は1770年にエドワード・ウェアリングによって提示され、1909年にダフィット・ヒルベルトによって肯定的に解決された[1]。その後、各 k に対して整数 s の最小値 g(k) を与える公式が発見されている。現在、単にウェアリングの問題と言えば、「全ての自然数は s 個の非負の k 乗数の和で表される」を満足する s の最小値を評価・決定する問題を指すことが多い(例えば、全ての自然数は、4個の平方数で表されるか、あるいは、9個の立方数で表されるか、19個の4乗数で表されるか、など)。ウェアリングの問題は、MSC2020(英語版)において、11P05 "Waring’s problem and variants"(ウェアリングの問題とその変種)として項目立てられている[2]。
ラグランジュの四平方定理との関係
ウェアリングが問題を提示するはるか前に、ディオファントスは全ての自然数は非負の平方数の四つの和として表すことができるかと問うた。1621年にクロード・バシェ(英語版)(Claude Gaspard Bachet de Méziriac)によるディオファントスの翻訳が出版されると、この問題はバシェの予想として知られるようになり、ウェアリングの予想の提示と同じ1770年にルイ・ラグランジュによって四平方定理として解かれた。ウェアリングは、全ての自然数が立方数の和として、また4乗数の和として表現できるか等々と、この問題を一般化して考えた。そして、全ての自然数は特定のべき指数での整数のべき乗の和として表すことができるのではないか、さらにこのような方法で、全ての自然数を特定のべき指数での整数のべき乗の和として表すことがいつでもできる(和の対象となる整数べき乗の)個数が存在するのではないかと予想した[注釈 1]。
g(k)の値
全ての自然数を自然数の k 乗べきの s 個の和で表せるとしたとき、最小の s の値を(全ての k に対して)g(k) で表すこととする。g(1) = 1 であることに注意する。簡単な計算により、7 は 4 個の平方数、23 は 9 個の立方数、79 は 19 個の 4 乗数で表すことがわかるので、これらの例から g(2) ≥ 4, g(3) ≥ 9, g(4) ≥ 19 であることがわかる。ウェアリングはこれらの値が実際は全ての自然数に対して表すことが可能ではないかと予想した。
2k{(3/2)k} + [(3/2)k] > 2k となるような k の値は知られていない。クルト・マーラー(英語版)(Kurt Mahler)はそのような k が存在しても有限個しかないことを証明し[11]、クビナ(Kubina)とウンダーリッビ(Wunderlich)は、そのような k は k > 471,600,000 である必要があることを示した[12]。この結果を受けて、第一の場合しか起こり得ないのではないか、すなわち、正の整数の k に対し、 となるのではないかと予想されている。
^ウェアリングは1770年に著書 Meditationes Algebraicae において "Omnis integer numerus vel est cubes vel e duobus, tribus, 4, 5, 6, 7, 8, vel novem cubus compositus, est eliam quadrato-quadratus vel e duobos, tribus &c. usque ad novemdecim compositus &sic deinceps."(「全ての整数は立方数であるか2, 3, 4, 5, 6, 7, 8または9個の立方数の和であり、平方数の平方であるか又は高々19個のそのような数の和であり、等々」)と述べている。
^ハーディとリトルウッドは g(k)を改良する中で、むしろ「十分大きな全ての自然数は s 個の非負の k 乗数の和で表される」を満足する s の最小値 G(k) のほうが本質的であると考えた。彼らは円周法(英語版)と呼ばれる新しい方法を使い、
を証明し、この問題に限らず解析的整数論全体に劇的な進歩をもたらした。また、ハーディとリトルウッドは一般化されたリーマン予想を前提としていたが、ヴィノグラードフはこの前提を必要としない方法とした。
^Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François, Problème de Waring pour les bicarrés. I. Schéma de la solution. (French. English summary) [Waring's problem for biquadrates. I. Sketch of the solution] C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 4, pp. 85-88
^Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François, Problème de Waring pour les bicarrés. II. Résultats auxiliaires pour le théorème asymptotique. (French. English summary) [Waring's problem for biquadrates. II. Auxiliary results for the asymptotic theorem] C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 5, pp. 161-163
^Pillai, S. S.. “On Waring's problem g(6)=73”. Proc. Indian Acad. Sci.12A: 30–40.
^Deshouillers, Jean-Marc; Hennecart, François; Landreau, Bernard; I. Gusti Putu Purnaba, Appendix by (2000). “7373170279850”. Mathematics of Computation69 (229): 421–439. doi:10.1090/S0025-5718-99-01116-3.
J. M. Deshouillers and F. Dress, Sum of 19 biquadrates: on the representation of large integers, Anrc. Scuola Norm. Sup. Pisa, Cl. Sci., (4) 92(1992), 113-153.
W. J. Ellison: Waring's problem. American Mathematical Monthly, volume 78 (1971), pp. 10–36. Survey, contains the precise formula for g(k), a simplified version of Hilbert's proof and a wealth of references.(ウェアリングの問題に関する解説記事)
A. Y. Khinchine, Three pearls of number theory, Graylock Press, Rochester, 1952, Unabridged version, Dover, 1998, ISBN 0-486-40026-3. 日本語訳:蟹江 幸博 (翻訳), 数論の三つの真珠, 日本評論社, 2000, ISBN 4-535-60843-1.(リンニクの方法による証明が掲載されている)
K. Mahler, On the fractional parts of the powers of a rational number, II, Mathematika 4(1957), 122-124.
M. B. Nathanson, Additive Number Theory: The Classical Bases, GTM 164, Springer-Verlag, 1996, ISBN 0-387-94656-X.
R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, Number Theory for the Millenium, Vol. III (Bennett et al., eds.), A. K. Peters, 2002, pp. 301-340. [1](ウェアリング問題に関するサーベイ)