デルタ作用素数学におけるデルタ作用素(デルタさようそ、英: delta operator)とは、体 上のある変数 に関する、多項式のベクトル空間上のシフト同変な線形作用素 で、次数を 1 下げるものである。 ここで がシフト同変(shift-equivariant)であるとは、 なら が成立することを言う。言い換えると、 が のシフトであるなら、 も のシフトであり、シフトベクトル を共通のものとして持つことを言う。 また、作用素 が次数を 1 下げるとは、次数 の多項式 に対し、 の次数が であるか、または 0( の場合)であることを言う。 デルタ作用素はしばしば、 についての多項式上のシフト同変な線形変換で、 を非ゼロの定数に写すものとして定義される。これは上述の定義よりも弱いように思われるが、シフト同変は十分強い条件なので、上述の定義と同値であることが示される。 例
基本多項式すべてのデルタ作用素 には、以下の三つの条件を満たす多項式列として定義される基本多項式(basic polynomials)の一意な列が存在する。 このような基本多項式の列は常に二項型多項式列であり、この他の二項型の列は存在しないことが示される。この初めの二つの条件が満たされない場合、三つ目の条件によって多項式はシェファー列であると言われる。これはより一般的な概念である。 関連項目参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia