三個の平方数の和この記事は「平方数」、「三角数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られている[1]ものであるが呼びかたが定まっていない。日本語では「三平方和定理」などと呼ばれることもあるが、ピタゴラスの定理とは全く別のものである。 自然数が三個の平方数の和で表されるための必要十分条件は、により、と表されることである。逆に、で表される自然数は三個の平方数の和で表されない。これはディオファントスの時代から研究されてきた[1]ことであるが、1798年、ルジャンドルによって証明された。 証明十分条件の証明は初等的に行うことは可能であるが、二次形式に関する議論を必要とし、複雑である[2]。必要条件の証明は次に記すとおり、容易である。 必要条件が三個の平方数の和で表されないことは、から明らかである。仮りに と表されるとすれば、は全て偶数であるから となり、数学的帰納法により、は三個の平方数の和で表されない。
系三個の三角数の和の形の自然数は高々三個の平方数の和で表されるから となる整数が存在する。故に全ての自然数は高々三個の三角数の和で表される。 四個の平方数の和全ての自然数はとしてで表される。その中でのものは高々三個の平方数の和で表され、のものはとして高々四個の平方数の和で表される。従って、全ての自然数は高々四個の平方数の和で表される。なお、四個の平方数の和については初等的な証明(→多角数定理)が知られている。
関連項目出典
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia