二等分線二等分線(にとうぶんせん)とは、2次元の幾何学において、線分や角度を二等分する直線のことである。 線分の二等分線![]() 線分の二等分線は、その線分の中点を通る。特に、対象の線分と垂直に交差する場合、その二等分線を垂直二等分線という。垂直二等分線上の各点は、対象の線分の両端からの距離が同じであるという特徴を有する。そのため、ボロノイ図における領域の境界線は、各々の母点の二等分線の一部になっている。 垂直二等分線は、定規とコンパスにより作図することができる。線分の両端を中心とする同一半径の円弧を描き、各々の円弧の交点と線分を結ぶ。円弧上の交点と線分の各端点によって作成される三角形が合同になることから、円弧上の交点を結ぶ直線が垂直二等分線になる。(図1.) ブラーマグプタの定理によると、円に内接する四角形の対角線が直角に交差する場合、対角線の交点から四角形の一辺に垂線を引いて作られる直線は、その四角形の対辺を二等分する。 角の二等分線![]() 角の二等分線は一つの角を等しい角度に二つに分ける。角の二等分線はただ一つしか存在せず、また、角の二等分線上の点から角を構成する直線への距離は同じになる。 二等分したい角を中心に二辺と交わる円弧を描いた後は、二辺との二つの交点から線分の垂直二等分線と同じようにして求めることができる。(図2.) 関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia