信用区間
信用区間(しんようくかん、英: credible interval, CI)または確信区間(かくしんくかん)とは、ベイズ統計学で母集団の真値が含まれることが、かなり確信できる数値範囲のことである。例えば95%CIとは、この範囲に95%の確率で母集団の値が存在すると、確信できることを意味する。 数学的には、θ の 100(1-α)%信用区間とは、 を満たすような部分集合C ⊂ Θ である[1]。 伝統的頻度論での真値は点であり、信頼区間は「範囲内に真の値を含む確率」として理解されるが、ベイズ統計学では真値は確率分布し、信用区間は「真の値が存在する確率範囲」として理解される。 頻度主義統計学でしばしば間違いであると指摘される、「□□の値が a から b の間に入る確率は○%である」との言い方は、ベイズ統計学においては正しい。 ![]() 等裾事後信用区間(とうきょじごしんようくかん、Equal-tail interval)とは、信用区間を求める際に確率分布の両端を等%ずつ切り落として得られた区間をいう。例えば95%等裾事後信用区間を求める際には、母数の事後確率分布の両端2.5%を切り落とした範囲となる。 ![]() 最高事後密度信用区間(さいこうじごみつどしんようくかん、Highest posterior density interval)とは、確率分布から分布密度がある値以上をとる区間を切り出した場合に、当該%となる様な区間をいう。非対称分布の場合、これは最も狭い区間となる。例えば95%最高事後密度信用区間を求める際に、下側1%点と上側4%点の高さ(確率密度)が同じであった場合、下側1%未満と上側4%超を切り落とした範囲となる。 出典
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia