存在汎化
存在汎化(そんざいはんか、英: Existential generalization[1][2], existential introduction, ∃I)は特定の言明もしくは1つの事例から、汎化的に量化された言明または存在命題に移行することを可能にする、妥当な推論規則のひとつである。一階述語論理では、形式的証明における存在記号(∃)の規則としてしばしば使用される。 例: 「ローバーは尻尾を振るのが大好きだ。したがって、何かは尻尾を振るのが大好きである。」 フィッチ表記では次のように書く。 ここで、aはQ(x)内のxのすべての束縛されていない事例を置き換える。[3] クワインクワインによれば、普遍例化と存在汎化は、「∀x x=x」が「ソクラテス=ソクラテス」を意味するという代わりに、その否定の「ソクラテス≠ソクラテス」が「∃x x≠x」を意味すると言うこともできるという、単一の原則における2つの側面である。しかしそれは形式上の原則でもある。これは、用語名がある場合、そしてまた指示がある場合にのみ成り立つ[4]。 関連項目脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia