普遍汎化
普遍汎化(ふへんはんか、英: Universal generalization, Universal introduction,[1][2][3] GEN)は、述語論理において妥当な推論規則のひとつである。これは、もしが導出されていれば、を導出してよい、という意味である。 汎化と仮定十分な汎化規則のもとでは記号の左側に仮定を置くことができるが、制限もある。Γは論理式の集合であり、は論理式であり、は導出されていると仮定する。汎化規則では、yがΓに言及されておらず、xがに現れない場合、が導かれる、とする。 これらの制限は健全性を保つために必要である。最初の制限がなければ、仮定からを結論づけることができてしまう。また2番目の制約がなければ、次のような演繹を行うことができてしまう。 これは、が不健全な演繹であると示すことを目的としている。 証明の例例題: はおよびから導出できる。 証明:
この証明では、普遍汎化がステップ8で使用されている。移行された式に自由変項がないため、ステップ10と11では演繹定理が適用できた。 関連項目脚注 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia