^Cheng, Alexander H.-D.; Cheng, Daisy T. (2005), "Heritage and early history of the boundary element method", Engineering Analysis with Boundary Elements, 29 (3): 268–302.
^Katsikadelis, John T. (2002), Boundary Elements Theory and Applications, Amsterdam: Elsevier, pp. XIV+336, ISBN 978-0-080-44107-8.
^Wrobel, L. C.; Aliabadi, M. H. (2002), The Boundary Element Method, New York: John Wiley & Sons, p. 1066, ISBN 978-0-470-84139-6 (in two volumes).
^Banerjee, Prasanta Kumar (1994), The Boundary Element Methods in Engineering (2nd ed.), London, etc.: McGraw-Hill, ISBN 978-0-07-707769-3.
^Mohamad, A. A. (2011). Lattice Boltzmann Method (Vol. 70). London: Springer.
^Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 30(1), 329-364.
^Aidun, C. K., & Clausen, J. R. (2010). Lattice-Boltzmann method for complex flows. Annual review of fluid mechanics, 42, 439-472.
^He, X., & Luo, L. S. (1997). Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical Review E, 56(6), 6811.
^Rajagopal, K. R. (1993). Mechanics of non-Newtonian fluids. Pitman Research Notes in Mathematics Series.
^Böhme, G. (2012). Non-Newtonian fluid mechanics. Elsevier.
^Crochet, M. J., & Walters, K. (1983). Numerical methods in non-Newtonian fluid mechanics. Annual Review of Fluid Mechanics, 15(1), 241-260.
^Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
^Peskin, C. S. (2002). The immersed boundary method. Acta numerica, 11, 479-517.
^Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An adaptive version of the immersed boundary method. Journal of computational physics, 153(2), 509-534.
^Taira, K., & Colonius, T. (2007). The immersed boundary method: a projection approach. Journal of Computational Physics, 225(2), 2118-2137.
^Brennen, C. E., & Brennen, C. E. (2005). Fundamentals of multiphase flow. Cambridge University Press.
^Crowe, C. T. (2005). Multiphase flow handbook. CRC Press.
^Jasak, H., Jemcov, A., & Tukovic, Z. (2007, September). OpenFOAM: A C++ library for complex physics simulations. In International workshop on coupled methods in numerical dynamics (Vol. 1000, pp. 1-20). IUC Dubrovnik Croatia.
参考文献
和書
スハス V. パタンカー(S.V. Patankar):「コンピュータによる熱移動と流れの数値解析」、森北出版、ISBN 978-4-627-91190-1 (1985年2月).
Joel H. Ferziger; Milovan Perić 著、小林敏雄、谷口伸行、坪倉誠 訳『コンピュータによる流体力学』シュプリンガー・フェアラーク東京、2003年12月18日。ISBN4-431-70842-1。 ※ 原著 Computational Methods for Fluid Dynamics の第3版。
Anderson, John D. (1995): Computational Fluid Dynamics: The Basics With Applications. Science/Engineering/Math, McGraw-Hill Science, ISBN 978-0-07-001685-9.
Joel H. Ferziger , Milovan Perić , Robert L. Street (2020): Computational Methods for Fluid Dynamics(4th Ed.), Springer, ISBN 978-3-319-99693-6.
Patankar, Suhas (1980): Numerical Heat Transfer and Fluid Flow: Hemisphere Series on Computational Methods in Mechanics and Thermal Science, Taylor & Francis, ISBN 978-0-89116-522-4.
Versteeg, H. K., & Malalasekera, W. (2007): An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson education.
Hirsch, C. (2007): Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, Elsevier.
Vivette Girault , Pierre-Arnaud Raviart: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer, ISBN 978-3-642-61623-5 (1986).
Christine Bernardi, Vivette Girault, Frédéric Hecht, Pierre-Arnaud Raviart, and Beatrice Rivière (2024): Mathematics and Finite Element Discretizations of Incompressible Navier–Stokes Flows, SIAM, ISBN 978-1-61197-811-7.