^Furihata, D., & Matsuo, T. (2010). Discrete variational derivative method: a structure-preserving numerical method for partial differential equations. Chapman and Hall/CRC.
^Logg, A., Mardal, K. A., & Wells, G. (Eds.). (2012). Automated solution of differential equations by the finite element method: The FEniCS book. en:Springer Science & Business Media.
^Langtangen, H. P., Logg, A., & Tveito, A. (2016). Solving PDEs in Python: The FEniCS Tutorial I. Springer International Publishing.
^Deuflhard, P., & Weiser, M. (2012). Adaptive numerical solution of PDEs. Walter de Gruyter.
離散化・近似解法に関する論文
^R. Hirota, J. Phys. Soc. Jpn. 43 (1977) 4116-4124.
^R. Hirota, J. Phys. Soc. Jpn. 43 (1977) 2074-2078.
^R. Hirota, J. Phys. Soc. Jpn. 43 (1977) 2079-2086.
^A. Ishikawa and T. Yaguchi, Geometric investigation of the discrete gradient method for the Webster equation with a weighted inner product, JSIAM Lett., 7 (2015), 17-20.
^A. Ishikawa and T. Yaguchi, Invariance of Furihata's Discrete Gradient Schemes for the Webster Equation with Different Riemannian Structures, AIP Conf. Proc. 1648, 180003 (2015).
^ abTakayasu Matsuo, Masaaki Sugihara, Daisuke Furihata, and Masatake Mori, Spatially Accurate Dissipative or Conservative Finite Difference Schemes Derived by the Discrete Variational Method, Japan J. Indust. Appl. Math., 19 (2002), 311-330.
^Miyatake, Y., Sogabe, T., & Zhang, S. L. (2018). On the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systems. en:Journal of Computational and Applied Mathematics, 342, 58-69.
^Bramble, J. H., & Hubbard, B. E. (1962). On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation. en:Numerische Mathematik, 4(1), 313-327.
^Yamamoto T. (2001) A New Insight of the Shortley-Weller Approximation for Dirichlet Problems. In: Alefeld G., Rohn J., Rump S., Yamamoto T. (eds) Symbolic Algebraic Methods and Verification Methods. Springer, Vienna
^Swarztrauber, P. N., & Sweet, R. A. (1973). The direct solution of the discrete Poisson equation on a disk. en:SIAM Journal on Numerical Analysis, 10(5), 900-907.
^Strikwerda, J. C., & Nagel, Y. M. (1986). A Numerical Method for the Incompressible Navier-Stokes Equations in Three-Dimensional Cylindrical Geometry (No. MRC-TSR-2948). WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
^Matsunaga, N., & Yamamoto, T. (1999). Convergence of swartztrauber-sweets approximation for the poisson-type equation on a disk. Numerical functional analysis and optimization, 20(9-10), 917-928.
^Fang, Q. (2006). Convergence of Ascher-Mattheij-Russell Finite Difference Method for a Class of Two-point Boundary Value Problems. INFORMATION, 9(4), 563.
^Zhang, X. Y. (2010). A New Ascher-Mattheij-Russell Type FDM for Nonlinear Two-point Boundary Value Problems. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 13(4), 1185-1194.
^Fox, L., Henrici, P., & Moler, C. (1967). Approximations and bounds for eigenvalues of elliptic operators. en:SIAM Journal on Numerical Analysis, 4(1), 89-102.
^Babuška, I., & Osborn, J. (1991). Eigenvalue problems.
^Bramble, J. H., & Osborn, J. E. (1973). Rate of convergence estimates for nonselfadjoint eigenvalue approximations. en:Mathematics of computation, 27(123), 525-549.
^Boffi, D., Brezzi, F., & Gastaldi, L. (2000). On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. en:Mathematics of computation, 69(229), 121-140.
^Boffi, D., Duran, R. G., & Gastaldi, L. (1999). A remark on spurious eigenvalues in a square. Applied mathematics letters, 12(3), 107-114.
^Driscoll, T. A., Hale, N., & Trefethen, L. N. (2014). Chebfun guide.
^
Platte, R. B., & Trefethen, L. N. (2010). Chebfun: a new kind of numerical computing. In Progress in industrial mathematics at ECMI 2008 (pp. 69-87). Springer, Berlin, Heidelberg.
^Wright, G. B., Javed, M., Montanelli, H., & Trefethen, L. N. (2015). Extension of Chebfun to periodic functions. en:SIAM Journal on Scientific Computing, 37(5), C554-C573.
^Hecht, F. (2012). New development in FreeFem++. Journal of numerical mathematics, 20(3-4), 251-266.
^Hecht, F., Pironneau, O., Le Hyaric, A., & Ohtsuka, K. (2005). FreeFem++ manual.
^Sadaka, G. (2012). FreeFem++, a tool to solve PDEs numerically. arXiv preprint arXiv:1205.1293.
^Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., ... & Wells, G. N. (2015). The FEniCS project version 1.5. Archive of Numerical Software, 3(100).
^Dupont, T., Hoffman, J., Johnson, C., Kirby, R. C., Larson, M. G., Logg, A., & Scott, L. R. (2003). The fenics project. Chalmers Finite Element Centre, Chalmers University of Technology.
^Breuer, B., Plum, M., & McKenna, P. J. (2001). "Inclusions and existence proofs for solutions of a nonlinear boundary value problem by spectral numerical methods." In Topics in Numerical Analysis (pp. 61–77). Springer, Vienna.
^ Gidas, B., Ni, W. M., & Nirenberg, L. (1979). "Symmetry and related properties via the maximum principle." Communications in Mathematical Physics, 68(3), 209–243.
^ abcLiu, X., & Oishi, S. (2013). Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. en:SIAM Journal on Numerical Analysis, 51(3), 1634-1654.
^ abLiu, X., & Oishi, S. (2013). Guaranteed high-precision estimation for interpolation constants on triangular finite elements. Japan Journal of Industrial and Applied Mathematics, 30(3), 635-652.
^ abOishi, S. (1994). Two topics in nonlinear system analysis through fixed point theorems. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 77(7), 1144-1153.
^ Numerical verification method of solutions for elliptic equations and its application to the Rayleigh-Bénard problem, Japan Journal of Industrial and Applied Mathematics Vol.26, Issue 2-3, Oct. 2009, pp.443--463, Yoshitaka Watanabe(Kyushu University), Mitsuhiro T. Nakao(Kyushu University)
^Liu, X. (2015). A framework of verified eigenvalue bounds for self-adjoint differential operators. Applied Mathematics and Computation, 267, 341-355.
^Sekine, K., Takayasu, A., & Oishi, S. I. (2014). An algorithm of identifying parameters satisfying a sufficient condition of Plum's Newton-Kantorovich like existence theorem for nonlinear operator equations. Nonlinear Theory and Its Applications, IEICE, 5(1), 64-79.
^Mizuguchi, M., Takayasu, A., Kubo, T., & Oishi, S. I. (2017). A method of verified computations for solutions to semilinear parabolic equations using semigroup theory. en:SIAM Journal on Numerical Analysis, 55(2), 980-1001.
^Watanabe, Y., Yamamoto, N., & Nakao, M. T. (1999). A numerical verification method of solutions for the Navier-Stokes equations. In Developments in reliable computing (pp. 347-357). Springer, Dordrecht.
^Nakao, M. T., Hashimoto, K., & Kobayashi, K. (2007). Verified numerical computation of solutions for the stationary Navier-Stokes equation in nonconvex polygonal domains. Hokkaido Mathematical Journal, 36(4), 777-799.
^Wilczak, D. (2003). Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof. Journal of Differential Equations, 194(2), 433-459.
^Zgliczynski, P. (2002). Attracting fixed points for the Kuramoto--Sivashinsky equation: A computer assisted proof. SIAM Journal on Applied Dynamical Systems, 1(2), 215-235.
^Zgliczynski, P. (2004). Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto–Sivashinsky PDE—a computer-assisted proof. Foundations of Computational Mathematics, 4(2), 157-185.
^Zgliczynski, P., & Mischaikow, K. (2001). Rigorous numerics for partial differential equations: The Kuramoto—Sivashinsky equation. Foundations of Computational Mathematics, 1(3), 255-288.
^Lahmann, J. R., & Plum, M. (2004). A computer‐assisted instability proof for the Orr‐Sommerfeld equation with Blasius profile. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 84(3), 188-204.
^Watanabe, Y., Plum, M., & Nakao, M. T. (2009). A computer‐assisted instability proof for the Orr‐Sommerfeld problem with Poiseuille flow. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 89(1), 5-18.
^Watanabe, Y., Nagatou, K., Plum, M., & Nakao, M. T. (2011). A computer-assisted stability proof for the Orr-Sommerfeld problem with Poiseuille flow. Nonlinear Theory and Its Applications, IEICE, 2(1), 123-127.
^Cyranka, J. (2015). Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof. Topological Methods in Nonlinear Analysis, 45(2), 655-697.
^Cyranka, J., & Zgliczynski, P. (2015). Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing-A computer assisted proof. SIAM Journal on Applied Dynamical Systems, 14(2), 787-821.
^A. Takayasu, M. Mizuguchi, T. Kubo, and S. Oishi: "Accurate method of verified computing for solutions of semilinear heat equations", Reliable computing, Vol. 25, pp. 74-99, July 2017.
^Mizuguchi, M., Takayasu, A., Kubo, T., & Oishi, S. I. (2014, September). A sharper error estimate of verified computations for nonlinear heat equations. In SCAN 2014 Book of Abstracts (p. 119-120).
^Mizuguchi, M., Kubo, T., Takayasu, A., & Oishi, S. (2013) A priori error estimate of inhomogeneous heat equations using rational approximation of semigroups. Japan Society for Simulation Technology.
^Takayasu, A., Yoon, S., & Endo, Y. (2019). Rigorous numerical computations for 1D advection equations with variable coefficients. Japan Journal of Industrial and Applied Mathematics, 36(2), 357-384.
Eymard, R. Gallouët, T. R. Herbin, R. (2000) The finite volume method, in Handbook of Numerical Analysis, Vol. VII, 2000, p. 713–1020. Editors: P.G. Ciarlet and J.L. Lions.
LeVeque, Randall (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge University Press.
Banerjee, Prasanta Kumar (1994), The Boundary Element Methods in Engineering (2nd ed.), London, etc.: en:McGraw-Hill, ISBN978-0-07-707769-3.
Beer, Gernot; Smith, Ian; Duenser, Christian, The Boundary Element Method with Programming: For Engineers and Scientists, Berlin – Heidelberg – New York: Springer-Verlag, pp. XIV+494, ISBN978-3-211-71574-1
Cheng, Alexander H.-D.; Cheng, Daisy T. (2005), "Heritage and early history of the boundary element method", Engineering Analysis with Boundary Elements, 29 (3): 268–302.
Katsikadelis, John T. (2002), Boundary Elements Theory and Applications, Amsterdam: Elsevier, pp. XIV+336, ISBN978-0-080-44107-8.
Lloyd N. Trefethen (2000) Spectral Methods in MATLAB. SIAM, Philadelphia, PA.
D. Gottlieb and S. Orzag (1977) "Numerical Analysis of Spectral Methods : Theory and Applications", SIAM, Philadelphia, PA.
J. Hesthaven, S. Gottlieb and D. Gottlieb (2007) "Spectral methods for time-dependent problems", Cambridge UP, Cambridge, UK.
Canuto C., Hussaini M. Y., Quarteroni A., and Zang T.A. (2006) Spectral Methods. Fundamentals in Single Domains. Springer-Verlag, Berlin Heidelberg
構造保存型数値解法
Leimkuhler, B. and Reich, S., Simulating Hamiltonian Dynamics, Cambridge University Press, Cambridge, 2004.
Sanz‐Serna, J. M. and Calvo, M. P., Numerical Hamiltonian Problems, Applied Mathematics and Mathematical Computation 7, Chapman & Hall, London, 1994.
Arnold, D. N., Bochev, P. B., Lehoucq, R. B., Nicolaides, R. A. and Shashkov, M. (eds.), Compatible Spatial Discretizations, in The IMA Volumes in Mathematics and Its Applications, Springer, New York, 2006.
Budd, C. and Piggott, M. D., Geometric integration and its applications, in Handbook of Numerical Analysis, XI, North‐Holland, Amsterdam, 2003, 35‐139.
Christiansen, S. H., Munthe‐Kaas, H. Z. and Owren, B., Topics in structure‐preserving discretization, en:Acta Numerica, 20 (2011), 1‐119.
Shashkov, M., Conservative Finite‐Difference Methods on General Grids, en:CRC Press, Boca Raton, 1996.
Jan S. Hesthaven: "Numerical Methods for Conservation Laws: From Analysis to Algorithms", SIAM, ISBN 978-1-611975-09-3 (2018).