星型多角形![]() ![]() 星型多角形とは、平面幾何学図形の一種で、多角形の各辺を延長し、得られた交点を結んだ図形を言う。 概要三角形・四角形では辺の延長上に交点が現れないため、その図形自身のみが星型多角形となる。 五角形・六角形では交点が一回現れ、それぞれ五芒星・六芒星と呼ばれる。 また、このような操作を、星型化という。星型多角形では、延長でできた鋭角のみを内角とする。 星型正多角形星型多角形の一種に星型正多角形というものもあり、正多角形からできたものであり、幾つかの正多角形に分解できない図形をいう。つまり、正偶数角形から作った星型正多角形は、最低二回は交わっていることになる(一回しか交わっていない星型偶数角形は、その偶数の半分の多角形二枚に分解できる)。 芒星図形五以上の正多角形の各辺を左右に延ばした図形を芒星と呼ぶ場合がある[1]。 また、七以上の正多角形を元とした場合には複数回出現するため、複数の芒星図形が存在することになる。 形成される芒星図形は、奇数nの場合、N=(n-3)/2, 偶数nの場合、N=(n-4)/2である。 芒星には以下の種類がある。
作図される芒星図形は、以下のようになる。
作図される芒星図形が複合型となるか否かは、密度(星型正多角形を参照)が頂点の約数となるか否かで決定される。密度が頂点の約数では無い場合は星型正多角形となる。約数の場合には、密度≦頂点/密度の場合は複合正多角形となり、密度>頂点/密度の場合に複合星型正多角形となる。頂点が素数の場合には、約数は1とその素数自身しか存在しないので複合型を発生しない。 脚注
参考文献
関連項目外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia