比較判定法比較判定法(ひかくはんていほう、英: comparison test)は、実数や複素数を項にもつ級数が、収束するか発散するかを判定する方法である。これは、判定の対象となる級数の項を、収束性が判明している級数の項と比較することによって、収束性を判断する。比較判定法には、2 つの種類が存在する。 第一種比較判定法第一種比較判定法とは、次のようなものである。もし、級数 が絶対収束し、n に依存しない実数 C が存在して が十分大きい n に対して成立するならば、級数 は絶対収束する。このとき、b が a を「抑える(dominate)」という。もし、級数 Σ|bn| が発散し、 が十分大きい n に対して成立するならば、級数 Σ|an| は絶対収束しない(ただし、例えば an の符号が交互に入れ替わるような場合は、条件収束することがある)。 第二種比較判定法第二種比較判定法とは、次のようなものである。もし、級数 が絶対収束し、n に依存しない実数 C が存在して が十分大きい n に対して成立するならば、級数 は絶対収束する。もし、級数 Σ|bn| が発散し、 が十分大きい n に対して成立するならば、級数 Σ|an| は絶対収束しない(ただし、例えば an の符号が交互に入れ替わるような場合は、条件収束することがある)。 これは、ダランベールの収束判定法に基づくものである。 参考文献
関連記事 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia