負の二項分布
負の二項分布(ふのにこうぶんぷ、英: negative binomial distribution)は、離散確率分布の一つ。確率 p で成功する独立なベルヌーイ試行が繰り返された時の成功回数の分布を表すという意味で二項分布によく似ているが、負の二項分布では試行回数があらかじめ決められておらず、r 回の成功が起こるまで試行が続けられる場合を考えた際の、失敗回数 k の分布を表す。たとえば、コインを 5 回投げた時に表が出る回数は二項分布に従うが、5 回表が出るまでコインを投げ続けた時に裏が出る回数は負の二項分布に従う。 複数の意味負の二項分布は、文献によって異なった意味で使われることがある。
パラメータ負の二項分布は、2つのパラメータを持つ。成功回数を表す定数 r と、おのおのの試行で成功する確率 p である。r は正の整数で、p は 0 から 1 までの実数である。r = 1 であるときは、幾何分布になる。普通は r を正の整数とするが、数学的な拡張から、r を整数と扱わないこともある。 性質上記のように3つの意味があるので、ここでは最初の意味に絞って解説する。最初の意味では、負の二項分布とは、おのおのの試行で成功する確率が p である独立なベルヌーイ試行を続けて行ったとき、r 回の成功をするまでに失敗する回数の分布であった。
関連項目脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia