部分多元環数学における体上の多元環(あるいは環上の多元環)の部分多元環(ぶぶんたげんかん、英: subalgebra)または部分代数とは、その線型部分空間であってかつ乗法について閉じている部分集合を言う。すなわち、演算をその上に制限すれば、それ自身が同じ体(あるいは環)上の多元環を成す。この概念は結合多元環やリー代数のように乗法がさらにいくつかの性質を満たすような特別の多元環に対してもそれぞれ特殊化して考えることができる。単に環と見做したとき乗法単位元をもつ単位的多元環に対しては、単位的部分多元環という、もとの多元環と乗法単位元を共有することを仮定するさらに強い概念も考えることができる。 例実数を成分にもつ 2 次正方行列全体 A は通常の行列の和・積・スカラー倍に関して実数体上の単位的多元環を成す。対角線上の左上を除く全ての成分が 0 の 2 次正方行列全体 B はその部分多元環になる。この部分多元環はそれ自身単位的多元環となるけれども、単位的部分多元環ではない。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia