冪指数が −1 である冪 b−1 は 1/b であり、「b の逆数」(または乗法逆元)と呼ばれる。一般に冪指数が負の整数 n である冪 bn は、bn × bm = bn + m という性質を保つように、底 b が 0 でないとき bn := 1/b−n と定義される。
冪乗は、任意の実数または複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数である冪において、底を固定して冪指数を変数と見なせば指数函数であり、冪指数を固定して底を変数と見なせば冪函数である。整数乗の冪に限れば、行列などを含めた多種多様な代数的対象に対してもそれを底とする冪を定義することができる。冪指数まで同種の対象に拡張すると、その上で定義された自然指数函数と自然対数函数をもつ完備ノルム環(例えば実数全体 R や複素数全体 C など)を想定するのが自然である。
歴史
歴史上に冪が現れたのは非常に古く、B.C.16世紀ごろに作成された粘土板には平方数表、平方根表、立方根表や三平方の定理について書かれており[1]、エジプト、インド、ギリシアなどでも冪の概念は明示されている。一方で、指数法則に言明する文献は見当たらず「指数概念」には未だ到達していないと考えるべきであるが、冪を意味する英単語 "power" はギリシアの数学者エウクレイデス(ユークリッド)が直線の平方を表すのに用いた語に起源がある[2]。また、「原論」において指数法則 am × an = am+n に相当する命題に言及している[1]が、この時代には算式は発明されておらず、すべて言葉で表現していた[1]。
記法
アルキメデスは 10 の冪を扱うために必要となる指数法則 10a • 10b = 10a + b を発見し、証明した(『砂粒を数えるもの』を参照)。9世紀に、ペルシアの数学者アル゠フワーリズミは平方を mal, 立方を kab で表した。これを後に中世イスラムの数学者がそれぞれ m, k で表す記法として用いていることが、15世紀ごろのアル゠カラサディ(英語版)の仕事に見ることができる[3]。
もとをたどれば、1544年にミハエル・スティーフェルがラテン語: "exponens" を造語し[10][11]、対して1586年にラザルス・シェーナーが数学者ペトルス・ラムスの書籍への補注としてラテン語: "index" を(スティーフェルが exponens と呼んだものと同じものを指す意味で)用いた[12]のがそれぞれの語源と考えられる。exponent と index はこれらの英語翻訳であり、例えば index はサミュエル・ジーク(英語版)が1696年に導入した[2]。
exponent と index の微妙な使い分けと併用の時代はここから始まり、その併用のされ方は国と時代だけでなく個人によっても異なった。イギリスは当初 index が優勢であり、これは聖バーソロミューの大虐殺で殉死したラムスの著作がプロテスタント諸国で非常に人気を集めたからだとの指摘がある[13]。
で定義する(厳密には再帰的に定義する)。
上付きの n が書けない場合には、x^nという表記を用いることが多い。
この操作を「x の n 乗を取る」などといい、特に n を固定して x を入力とする関数(特に実数 x の函数)と見るときは、冪関数という。
x の 2乗、3乗は特に、それぞれ x の平方 (へいほう、 英: square)、立方 (りっぽう、 英: cube) と呼ばれ、2乗を特に自乗という場合もある。
冪 xn において、x を底(てい、英: base、 基数)と呼び、n を冪数、冪指数または単に指数(しすう、 英: exponent) と呼ぶ[注釈 1]。必ずしも冪指数とは限らない添字 n をその基準となる文字 x の右肩に乗せる添字記法を指数表記・冪記法などとよぶ場合もある。
で定義する。この級数は任意の複素数 z に対して収束する。特に exp(1) ≕ e は自然対数の底に等しく、任意の実数 x に対して exp(x) = ex(右辺は実数 e の実数 x 乗の意)である(したがって任意の複素数に対して ez ≔ exp(z) とも書かれる[注釈 2])。z ≔ x + iy (x, y は実数)と表すと、
整数 r に対して、[r ≥ 0 かつ b ≠ 0] または [r ≤ 0 かつ a ≠ 0] のとき
a > 0, b > 0 ならば r は任意の実数
a, b の少なくとも一方が負ならば r は分母が奇数の任意の有理数
a ≠ 0 ならば r, s は任意の整数
a > 0 ならば r, s は任意の実数
a < 0 ならば r, s は分母が奇数の任意の有理数
a < 0 かつ有理数 r, s に対して、r および r • s は分母が奇数、かつ r • s の分子が奇数のとき
(ar)s = ±ar • s に関して
冪指数 r, s の少なくとも一方が無理数であるとき、あるいはこれらの双方が有理数だが r または r • s の少なくとも一方の分母が偶数となるときには、a < 0 に対する (ar)s または ar • s は定義されない。それ以外のとき、この両者は定義されて符号の違いを除いて一致する。特に両者は a > 0 ならば任意の実数 r, s に対して一致し、また a ≠ 0 ならば任意の整数 r, s に対して一致する。
a < 0 かつ r, s が整数でない有理数であるときには可能性は二通り考えられ、どちらになるかは r の分子と s の分母の素因数分解が関係する。式 (ar)s = ±ar • s の右辺の符号は何れが正しいのかを知るには a = −1 のときを見れば十分である(与えられた r, s に対して a = −1 のとき正しくなる方の符号をとれば、任意の a < 0 についても成り立つ)。
a < 0 に対して (ar)s = −ar • s が適用されるならば、a ≠ 0 に対して (ar)s = |a|r • s が成り立つ(冪指数が正ならば a = 0 のときも成り立つ)。
正方行列 A に対して A 自身の n 個の積を行列の冪と呼ぶ。また A0 は単位行列に等しいものと定義され[17]、さらに A が可逆ならば A−n ≔ (A−1)n と定義する。
行列の冪は離散力学系(英語版)の文脈でしばしば現れる。そこでは行列 A は適当な系の状態ベクトル x を次の状態 Ax へ遷移させることを表す[18]。これは例えばマルコフ連鎖の標準的な解釈である。これにより、A2x は二段階後の系の状態であり、以下同様に Anx は n 段階後の系の状態と理解される。つまり行列の冪 An は現在と n 段階後の状態の間の遷移行列であって、行列の冪を計算することはこの力学系の発展を解くことに等しい。便宜上、多くの場合において行列の冪は固有値と固有ベクトルを用いて計算することができる。
行列を離れてより一般の線型作用素にも冪演算は定められる。例えば微分積分学における微分演算 d / dx は函数 f に作用して別の函数 df / dx = f' を与える線型作用素であり、この作用素の n-乗は n-階微分
任意の有限体 F は、素数p がただ一つ存在して、任意の x ∈ F に対して px = 0 が成り立つ(x を p 個加えれば零になる)という性質を持つ。例えば二元体 F2 では p = 2 である。この素数 p はその体の標数と呼ばれる。F を標数 p の体として F の各元を p-乗する写像 f(x) = xp を考える。これは F のフロベニュース自己準同型と呼ばれる。新入生の夢(幼稚な二項定理)とも呼ばれる等式 (x + y)p = xp + yp がこの体においては成り立つため、フロベニュース自己準同型が実際に体の自己準同型を与えるものであることが確認できる。フロベニュース自己準同型は F の素体上のガロワ群の生成元であるため数論において重要である。
一つの集合上に複数の冪結合的に項演算が定義されるときには、各演算に関して反復による冪演算を考えることができるから、どれに関する冪かを明示するために上付き添字に反復したい演算を表す記号を併置する方法がよく用いられる。つまり演算 ∗ および # が定義されるとき、x∗n と書けば x ∗ ⋯ ∗ x を意味し、x#n と書けば x # ⋯ # x を意味するという具合である。
上付き添字記法は、特に群論において、共軛変換を表すのにも用いられる(即ち、g, h を適当な群の元として gh = h−1gh)。この共軛変換は指数法則と同様の性質を一部満足するけれども、これはいかなる意味においても反復乗法としての冪演算の例ではない。カンドルはこれら共軛変換の性質が中心的な役割を果たす代数的構造である。
自然数 n と任意の集合 A に対して、式 An はしばしば A の元からなる順序 n-組全体の成す集合を表すのに用いられる。これは An は集合 {0, 1, 2, …, n−1} から集合 A への写像全体の成す集合であると言っても同じことである(n-組 (a0, a1, a2, …, an−1) は i を ai へ送る写像を表す)。
無限基数κ と集合 A に対しても、記号 Aκ は濃度 κ の集合から A への写像全体の成す集合を表すのに用いられる。基数の冪との区別のために κA と書くこともある。
一般化された冪は、複数の集合上で定義される演算や追加の構造を持つ集合に対しても定義することができる。例えば、線型代数学において勝手な添字集合上でのベクトル空間の直和を考えることができる。つまり Vi をベクトル空間として
を考えるとき、任意の i について Vi = V とすれば得られる直和を冪記法を用いて V⊕N あるいは直和の意味であることが明らかならば単に VN のように書くことができる。ここで再び集合 N を基数 n で取り替えれば Vn を得る(濃度 n を持つ特定の標準的な集合を選ぶことなしに、これは同型を除いてのみ定義される)。V として実数体 R を(それ自身の上のベクトル空間と見て)とれば、n を適当な自然数として線型代数学でもっともよく調べられる実ベクトル空間 Rn を得る。
配置集合
冪演算の底を集合とするとき、何も断りがなければ冪演算はデカルト積である。複数の集合のデカルト積は n-組を与え、n-組は適当な濃度を持つ集合上で定義された写像として表すことができるのだから、この場合冪 SN は単に N から S への写像全体の成す集合
2乗した後に a を乗算するか否かは、指数 n を二進表記したときの各ビットが1であるか否かと一致する。
コンピュータのアルゴリズムとして書くとこうなる。
指数 n の二進表記を n とし、n の最下位桁を n[0]、最上位桁を n[m]、最下位から数えて k 桁目を n[k] と表記する。
結果値 v := 1 とし、
k := m とする(最上位)。
v := v * v
n[k] が 1 ならば v := v * a とする。
k := k − 1
k ≧ 0 なら 3. に戻る。
この方式では、4. における乗数が常に a なので、下位桁から計算する方式に比べて乗数の桁数が小さくなり、計算時間がかからない。これは特に、レジスタに入りきらないような巨大な自然数を扱う場合に顕著となる。ただし(RSA暗号のように)冪乗の剰余を計算する場合であって法の大きさが a と同程度ならば、この効果はない。
また 4. における乗数が常に a なので、あらかじめ a が定数(2 や 10 など、またはディフィー・ヘルマン鍵共有の生成元 g など)であることがわかっている場合には、4. の乗算を最適化をすることができる。
^Cajori, Florian (2007). A History of Mathematical Notations, Vol I. Cosimo Classics. Pg 344. ISBN 1602066841
^René Descartes, Discourse de la Méthode ... (Leiden, (Netherlands): Jan Maire, 1637), appended book: La Géométrie, book one, page 299. From page 299: " ... Et aa, ou a2, pour multiplier a par soy mesme; Et a3, pour le multiplier encore une fois par a, & ainsi a l'infini ; ... " ( ... and aa, or a2, in order to multiply a by itself; and a3, in order to multiply it once more by a, and thus to infinity ; ... )
^This definition of "involution" appears in the OED second edition, 1989, and Merriam-Webster online dictionary [1]. The most recent usage in this sense cited by the OED is from 1806.
Michael Stifel, Arithmetica integra (Nuremberg ("Norimberga"), (Germany): Johannes Petreius, 1544), Liber III (Book 3), Caput III (Chapter 3): De Algorithmo numerorum Cossicorum. (On algorithms of algebra.), page 236. Stifel was trying to conveniently represent the terms of geometric progressions. He devised a cumbersome notation for doing that. On page 236, he presented the notation for the first eight terms of a geometric progression (using 1 as a base) and then he wrote: "Quemadmodum autem hic vides, quemlibet terminum progressionis cossicæ, suum habere exponentem in suo ordine (ut 1ze habet 1. 1ʓ habet 2 &c.) sic quilibet numerus cossicus, servat exponentem suæ denominationis implicite, qui ei serviat & utilis sit, potissimus in multiplicatione & divisione, ut paulo inferius dicam." (However, you see how each term of the progression has its exponent in its order (as 1ze has a 1, 1ʓ has a 2, etc.), so each number is implicitly subject to the exponent of its denomination, which [in turn] is subject to it and is useful mainly in multiplication and division, as I will mention just below.) [Note: Most of Stifel's cumbersome symbols were taken from Christoff Rudolff, who in turn took them from Leonardo Fibonacci's Liber Abaci (1202), where they served as shorthand symbols for the Latin words res/radix (x), census/zensus (x2), and cubus (x3).]