교대급수미적분학에서 교대급수(交代級數, 영어: alternating series)는 양과 음의 항이 번갈아 가며 나타나는 실수 항 급수다. 교대급수 판정법(交代級數判定法, 영어: alternating series test)에 따르면, 만약 교대급수의 항의 절댓값이 0으로 수렴하는 단조수열이라면, 이 급수는 수렴한다. 교대급수 판정법은 디리클레 판정법의 특수한 경우다. 정의교대급수음이 아닌 실수의 수열 ()에 대한 교대급수는 다음 두 급수 가운데 하나를 뜻한다. 교대급수 판정법음이 아닌 실수의 수열 ()에 대하여, 다음 두 조건이 성립한다고 하자.
그렇다면, 교대급수 는 수렴한다. 또한, 다음 부등식이 성립한다.[1]:183 이를 교대급수 판정법이라고 한다. 디리클레 판정법을 통한 증명: 직접적인 증명: 예모든 수렴하는 양의 실수 항 급수에 대하여, 이에 대응하는 교대급수는 절대 수렴하며, 특히 수렴한다. 교대급수 를 생각하자. 수열 은 감소수열이며, 0으로 수렴한다. 교대급수 판정법에 의하여, 이 급수는 수렴한다. 이 교대급수에 대응하는 양의 실수 항 급수는 조화급수이며, 이는 발산한다. 즉, 이 교대급수는 오직 조건 수렴한다. 사실, 이 급수의 합은 이다. 이는 아벨 극한 정리를 통하여 보일 수 있다. 보다 일반적으로, 교대급수 를 생각하자.
각주
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia