맥스웰-볼츠만 통계
통계역학에서 맥스웰-볼츠만 통계(Maxwell–Boltzmann statistics)는 양자 효과를 감안하기에는 미미할 정도로 온도가 높고 밀도가 낮은 경우에 한해 열적 평형 상태에서 다양한 입자의 통계적 분포를 설명한다. 개념각 상태에 있는 모든 알갱이 수에 대하여 합하여야만 한다. 즉 각 r에 대해서 인데 고정된 총 알갱이 수에 대해 다음의 제한식을 따라야만 한다. 그런데 알갱이는 구별할 수 있는 것으로 또한 생각을 한다. 그러므로 다른 상태에 있는 두 알갱이의 어떤 순열은 비록 수 는 바뀌지 않은 채로 남아 있지만 기체 전체의 구별되는 상태로 세어야만 한다. 이것은 각 한-알갱이 상태에 얼마나 많은 알갱이가 있는가를 명시하는 것이 충분하지 못해서가 아니라, 어느 상태에 있는 알갱이가 있는가를 명시하는 것이 필요하기 때문에 그렇다. 큰 분포함수여기서 이다. 큰 분배함수는 다음과 같이 증명할 수 있다. 점유수맥스웰-볼츠만 통계에 따르면, 상태 i에 놓여 있는 입자의 점유수는 다음과 같다.
같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia